G-Groups and Biuniform Abelian Normal Subgroups

被引:3
|
作者
Arroyo Paniagua, Maria Jose [1 ]
Facchini, Alberto [2 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Mexico City 09340, DF, Mexico
[2] Univ Padua, Dipartimento Matemat, I-35121 Padua, Italy
来源
ADVANCES IN GROUP THEORY AND APPLICATIONS | 2016年 / 2卷
关键词
G-group; direct-product decomposition; Krull-Schmidt theorem; semidirect product;
D O I
10.4399/97888548970146
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a weak form of the Krull-Schmidt Theorem concerning the behavior of direct-product decompositions of G-groups, biuniform abelian G-groups, G-semi-direct products and the G-set Hom(H,A). Here G and A are groups and H is a G-group. Our main result is the following. Let P be any group. Let H-1, ... ,H-n, H'(1), ... ,H'(t) be n+t biuniform abelian normal subgroups of P. Suppose that the products H-1, ... ,H-n, H'(1), ... ,H'(t) are direct, that is, H-n, ... ,H(1 )x ... x H-n and H'(1), ... ,H't = H'(t) x ... x H'(t) .Then the normal subgroups H(1 )x ... x H-n and H'(1) x ... x H'(t) of P are P-isomorphic if and only if n = t and there exist two permutations sigma - and tau of {1, 2, ... , n} such that [H-i](m) = [H'(sigma(i))](m) and [H-i](e) = [H'(tau(i))](e) for every i = 1, 2, ... ,n.
引用
收藏
页码:79 / 111
页数:33
相关论文
共 50 条
  • [21] Solitary subgroups of Abelian groups
    Calugareanu, Grigore
    Chekhlov, Andrey R.
    EXPOSITIONES MATHEMATICAE, 2021, 39 (03) : 354 - 368
  • [22] COVERINGS OF GROUPS BY ABELIAN SUBGROUPS
    FABER, V
    LAVER, R
    MCKENZIE, R
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1978, 30 (05): : 933 - 945
  • [23] On groups saturated with abelian subgroups
    Kazarin, LS
    Kurdachenko, LA
    Subbotin, IY
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 1998, 8 (04) : 443 - 466
  • [24] The Minimal Faithful Permutation Degree of Groups without Abelian Normal Subgroups
    Das, Bireswar
    Thakkar, Dhara
    PROCEEDINGS OF THE 56TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2024, 2024, : 118 - 129
  • [25] Counting Fuzzy Normal Subgroups of Non-Abelian Finite Groups
    Davvaz, B.
    Ardekani, L. Kamali
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2017, 28 (06) : 571 - 590
  • [26] Groups with many abelian subgroups
    De Falco, M.
    de Giovanni, F.
    Musella, C.
    Sysak, Y. P.
    JOURNAL OF ALGEBRA, 2011, 347 (01) : 83 - 95
  • [27] Abelian subgroups of garside groups
    Lee, Eon-Kyung
    Lee, Sang Jin
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 1121 - 1139
  • [28] Abelian groups as autocommutator subgroups
    Chaboksavar M.
    Farrokhi Derakhshande Ghoochan M.
    Saeedi F.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2014, 63 (3): : 319 - 327
  • [29] Polynomial-Time Isomorphism Test for Groups with No Abelian Normal Subgroups
    Babai, Laszlo
    Codenotti, Paolo
    Qiao, Youming
    AUTOMATA, LANGUAGES, AND PROGRAMMING, ICALP 2012 PT I, 2012, 7391 : 51 - 62
  • [30] ON NON-NORMAL NON-ABELIAN SUBGROUPS OF FINITE GROUPS
    Zhang, C.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2017, 43 (03): : 659 - 663