The k-Rainbow Domination and Domatic Numbers of Digraphs

被引:1
|
作者
Sheikholeslami, S. M. [1 ]
Volkmann, Lutz [2 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Math, Tabriz, Iran
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2016年 / 56卷 / 01期
关键词
D O I
10.5666/KMJ.2016.56.1.69
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v is an element of V (D) with f(v) = (sic), the condition boolean OR(u is an element of N-(v)) f(u) = {1, 2, . . . , k} is fulfilled, where N (v) is the set of in-neighbors of v. A set {f(1), f(2), . . . , f(d)} of k-rainbow dominating functions on D with the property that Sigma(d)(i=1) |f(i) (v)| <= k for each v is an element of V (D), is called a k-rainbow dominating family (of functions) on D. The maximum number of functions in a k-rainbow dominating family on D is the k-rainbow domatic number of D, denoted by d(rk)(D). In this paper we initiate the study of the k-rainbow domatic number in digraphs, and we present some bounds for d(rk)(D).
引用
收藏
页码:69 / 81
页数:13
相关论文
共 50 条
  • [41] ON K-DOMATIC NUMBERS OF GRAPHS
    ZELINKA, B
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 1983, 33 (02) : 309 - 313
  • [42] Signed {k}-domatic numbers of graphs
    1600, Charles Babbage Research Centre (87):
  • [43] On the Total {k}-Domination and Total {k}-Domatic Number of Graphs
    Aram, H.
    Sheikholeslami, S. M.
    Volkmann, L.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 39 - 47
  • [44] Total double Roman domination numbers in digraphs
    Amjadi, J.
    Pourhosseini, F.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (06)
  • [45] Signed double Roman domination numbers in digraphs
    Amjadi, Jafar
    Pourhosseini, Fatemeh
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2021, 48 (02): : 194 - 205
  • [46] On the complexity of k-rainbow cycle colouring problems
    Li, Shasha
    Shi, Yongtang
    Tu, Jianhua
    Zhao, Yan
    DISCRETE APPLIED MATHEMATICS, 2019, 264 : 125 - 133
  • [47] Restrained k-rainbow reinforcement number in graphs
    Ebrahimi, N.
    Amjadi, J.
    Chellali, M.
    Sheikholeslami, S. M.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (12)
  • [48] The restrained k-rainbow reinforcement number of graphs
    Shaebani, Saeed
    Kosari, Saeed
    Asgharsharghi, Leila
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (03)
  • [49] Independent k-rainbow bondage number of graphs
    Kosari, S.
    Amjadi, J.
    Chellali, M.
    Najafi, F.
    Sheikholeslami, S. M.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2024, 21 (01) : 102 - 109
  • [50] Total k-rainbow reinforcement number in graphs
    Shahbazi, L.
    Ahangar, H. Abdollahzadeh
    Khoeilar, R.
    Sheikholeslami, S. M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2021, 13 (01)