INTRODUCTION TO DIFFUSION ON FINSLER MANIFOLDS

被引:2
|
作者
ANTONELLI, PL
ZASTAWNIAK, TJ
机构
[1] Department of Mathematics University of Alberta, Edmonton
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0895-7177(94)90160-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion theory on Finsler manifolds is briefly presented, including generalizations of the notions of stochastic parallel transport, stochastic development (rolling), and Brownian motion from the well-known Riemannian case. The results discussed cover the case of an arbitrary h- and v-metrical deflection-free v-symmetric Finsler connection, which proves important in applications, as can be seen from our second paper in this issue involving the so-called Wagner connection.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 50 条
  • [21] Submanifolds of special Finsler manifolds
    Tamim, AA
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2004, 64 (3-4): : 299 - 317
  • [22] FINSLER MANIFOLDS WITH REVERSIBLE GEODESICS
    Sabau, Sorin V.
    Shimada, Hideo
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 57 (01): : 91 - 103
  • [23] Laplacian on complex Finsler manifolds
    Xiao, Jinxiu
    Zhong, Tongde
    Qiu, Chunhui
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2011, 32 (04) : 507 - 520
  • [24] On Minkowskian product of Finsler manifolds
    He, Yong
    Li, Jiahui
    Bian, Lize
    Zhang, Na
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2023, 89
  • [25] Laplacian on complex Finsler manifolds
    Jinxiu Xiao
    Tongde Zhong
    Chunhui Qiu
    Chinese Annals of Mathematics, Series B, 2011, 32 : 507 - 520
  • [26] On a class of complete Finsler manifolds
    Sedaghat, M. K.
    Bidabad, B.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2015, 26 (11)
  • [27] Uniform Finsler Hadamard manifolds
    Egloff, D
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1997, 66 (03): : 323 - 357
  • [28] Intersection theorems for Finsler manifolds
    Kozma, L
    Peter, R
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2000, 57 (1-2): : 193 - 201
  • [29] On fundamental groups of Finsler manifolds
    YiBing Shen
    Wei Zhao
    Science China Mathematics, 2011, 54 : 1951 - 1964
  • [30] On geodesically reversible Finsler manifolds
    Fang, Yong
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2023, 15 (04) : 935 - 951