DISCRETE TORSION AND NUMERICAL DIFFERENTIATION OF BINORMAL VECTOR FIELD OF A SPACE CURVE

被引:0
|
作者
Jeon, Myungjin [1 ]
机构
[1] Semyung Univ, Dept Comp Aided Math Informat Sci, San 21-1, Jechon 390711, Chungbuk, South Korea
来源
JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS | 2005年 / 12卷 / 04期
关键词
torsion estimation; numerical differentiation of vector field; space curve; Frenet formula;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Geometric invariants are basic tools for geometric processing and computer vision. In this paper, we give a linear approximation for the differentiation of the binormal vector field of a space curve by using the forward and backward differences of discrete binormal vectors. Two kind of discrete torsion, say, backward torsion T-b and forward torsion T-f can be defined by the dot product of the (backward and forward) discrete differentiation of binormal vectors that are linear approximations of torsion. Using Frenet formula and Taylor series expansion, we give error estimations for the discrete torsions. We also give numerical tests for a curve. Notably the average of T-b and T-f looks more stable in errors.
引用
收藏
页码:275 / 287
页数:13
相关论文
共 50 条
  • [21] NEW CHARACTERIZATIONS FOR SPHERICAL INDICATRICES OF INVOLUTES OF A SPACELIKE CURVE WITH A TIMELIKE BINORMAL IN MINKOWSKI 3-SPACE
    Bilici, Mustafa
    Caliskan, Mustafa
    JOURNAL OF SCIENCE AND ARTS, 2022, (03): : 629 - 638
  • [22] Nonlinear partial differential equations associated with binormal motions of constant torsion curves in Minkowski 3-space
    Xu, Chuanyou
    Cao, Xifang
    ARCHIV DER MATHEMATIK, 2012, 99 (05) : 481 - 492
  • [23] On the vector decomposition problem for m-torsion points on an elliptic curve
    Kiyavash, N
    Duursma, I
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 548 - 548
  • [24] Discrete multiscale vector field decomposition
    Tong, YY
    Lombeyda, S
    Hirani, AN
    Desbrun, M
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 445 - 452
  • [25] Vector field for curve tracking with obstacle avoidance
    Nunes, Arthur H. D.
    Rezende, Adriano M. C.
    Cruz Junior, Gilmar P.
    Freitas, Gustavo M.
    Goncalves, Vinicius M.
    Pimenta, Luciano C. A.
    2022 IEEE 61ST CONFERENCE ON DECISION AND CONTROL (CDC), 2022, : 2031 - 2038
  • [26] Improved Feedback Quantizer with Discrete Space Vector
    Veillon, Matias
    Espinosa, Eduardo
    Melin, Pedro
    Mirzaeva, Galina
    Rivera, Marco
    Baier, Carlos R.
    Ramirez, Roberto O.
    Viola, Fabio
    SENSORS, 2024, 24 (01)
  • [27] FIELD-EQUATIONS FOR A RIEMANNIAN SPACE WITH TORSION
    ZHOGIN, IL
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1990, 33 (09): : 83 - 87
  • [28] Siacci’s resolution of the acceleration vector for a space curve
    James Casey
    Meccanica, 2011, 46 : 471 - 476
  • [29] Siacci's resolution of the acceleration vector for a space curve
    Casey, James
    MECCANICA, 2011, 46 (02) : 471 - 476