NO-GO THEOREM FOR CONFORMAL SUPERSYMMETRY

被引:3
|
作者
CASTELL, L [1 ]
HEIDENREICH, W [1 ]
机构
[1] UNIV CALIF LOS ANGELES,DEPT PHYS,LOS ANGELES,CA 90024
来源
PHYSICAL REVIEW D | 1982年 / 25卷 / 06期
关键词
D O I
10.1103/PhysRevD.25.1745
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
引用
收藏
页码:1745 / 1748
页数:4
相关论文
共 50 条
  • [21] A no-go theorem for nonlinear canonical quantization
    Englis, M
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2002, 37 (03) : 287 - 288
  • [22] No-Go Theorem for the Composition of Quantum Systems
    Schlosshauer, Maximilian
    Fine, Arthur
    PHYSICAL REVIEW LETTERS, 2014, 112 (07)
  • [23] Comment on a No-Go Theorem for ψ-Ontic Models
    Walleghem, Laurens
    Khanna, Shashaank
    Bhavsar, Rutvij
    FOUNDATIONS OF PHYSICS, 2025, 55 (02)
  • [24] No-Go Theorem for Gaussian Quantum Error Correction
    Niset, Julien
    Fiurasek, Jaromir
    Cerf, Nicolas J.
    PHYSICAL REVIEW LETTERS, 2009, 102 (12)
  • [25] Mathematical Formulation of the No-Go Theorem in Horndeski Theory
    Mironov, Sergey
    UNIVERSE, 2019, 5 (02):
  • [26] Faithful quantum broadcast beyond the no-go theorem
    Ming-Xing Luo
    Yun Deng
    Xiu-Bo Chen
    Yi-Xian Yang
    Hong-Heng Li
    Quantum Information Processing, 2013, 12 : 1969 - 1979
  • [27] A No-go Theorem for Robust Acceleration in the Hyperbolic Plane
    Hamilton, Linus
    Moitra, Ankur
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [28] How to evade a no-go theorem in flavor symmetries
    Koide, Yoshio
    GRAND UNIFIED THEORIES: CURRENT STATUS AND FUTURE PROSPECTS, 2008, 1015 : 80 - 86
  • [29] No-go theorem for entanglement distillation using catalysis
    Lami, Ludovico
    Regula, Bartosz
    Streltsov, Alexander
    PHYSICAL REVIEW A, 2024, 109 (05)
  • [30] A no-go theorem for Poincare-invariant networks
    Hossenfelder, Sabine
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (20)