PRINCIPAL CONGRUENCES OF DOUBLE DEMI-P-LATTICES

被引:15
|
作者
SANKAPPANAVAR, HP [1 ]
机构
[1] UNIV WATERLOO,DEPT PURE MATH,WATERLOO N2L 3G1,ONTARIO,CANADA
关键词
D O I
10.1007/BF01182457
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A formula is given to express a principal congruence on a double demi-p-lattice as a join of countably many principal lattice congruences. It is then applied to show that the variety of double demi-p-lattices has the congruence extension property. As special cases one obtains some known results for distributive double p-lattices due to T. Hecht and T. Katriňák. © 1990 Birkhäuser Verlag.
引用
收藏
页码:248 / 253
页数:6
相关论文
共 50 条
  • [31] VARIETIES OF DEMI-PSEUDOCOMPLEMENTED LATTICES
    SANKAPPANAVAR, HP
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1991, 37 (05): : 411 - 420
  • [32] ON LATTICES WHOSE CONGRUENCES FORM STONE LATTICES
    MALLIAH, C
    BHATTA, PS
    ACTA MATHEMATICA HUNGARICA, 1987, 49 (3-4) : 385 - 389
  • [33] From Quasi-congruences to Congruences in Residuated Lattices
    Farsad, Farideh
    Saeid, Arsham Borumand
    Nourollahi, Mohammad Ali
    JOURNAL OF APPLIED LOGICS-IFCOLOG JOURNAL OF LOGICS AND THEIR APPLICATIONS, 2024, 11 (05):
  • [34] Characterizing representability by principal congruences for finite distributive lattices with a join-irreducible unit element
    Grätzer G.
    Acta Scientiarum Mathematicarum, 2017, 83 (3-4): : 415 - 431
  • [35] From Quasi-congruences to Congruences in Residuated Lattices
    Farsad, Farideh
    Saeid, Arsham Borumand
    Nourollahi, Mohammad Ali
    Journal of Applied Logics, 2024, 11 (05): : 661 - 678
  • [36] Congruences of clone lattices, II
    Krokhin, AA
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2001, 18 (02): : 151 - 159
  • [37] COMPLEMENTED CONGRUENCES ON COMPLEMENTED LATTICES
    JANOWITZ, MF
    PACIFIC JOURNAL OF MATHEMATICS, 1977, 73 (01) : 87 - 90
  • [38] On the complexity of the lattices of subvarieties and congruences
    Kravchenko, A. V.
    Nurakunov, A. M.
    Schwidefsky, M. V.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (08) : 1609 - 1624
  • [39] Fuzzy ideals and congruences of lattices
    Swamy, UM
    Raju, DV
    FUZZY SETS AND SYSTEMS, 1998, 95 (02) : 249 - 253
  • [40] Orthomodular lattices and permutable congruences
    David Kelly
    R. Padmanabhan
    algebra universalis, 2005, 53 : 227 - 228