DEVELOPMENT OF AN ALGORITHM FOR SOLVING PROBLEMS OF FRACTURE MECHANICS

被引:0
|
作者
Renev, S. A. [1 ]
Prokopov, V. S. [2 ]
机构
[1] BMSTU, Ul Baumanskaya 2 Ya,5, Moscow 105005, Russia
[2] APM Ltd, Off 6, Oktyabrsky Blvd 14, Korolev 141070, Moscow Region, Russia
来源
MATERIALS PHYSICS AND MECHANICS | 2016年 / 26卷 / 01期
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The implementation of the fundamentals of fracture mechanics in Russian CAx system is discussed. Implementation of two algorithms that use basic fracture mechanics parameters (stress intensity factor (SIF) is calculated using analytical method), is presented. The algorithms use the concept of finite element method (FEM). Simulation of fracture process of the computational model is made by "Birth and Death" method. The developed algorithm eliminates the disadvantages inherent in foreign CAx systems.
引用
收藏
页码:93 / 96
页数:4
相关论文
共 50 条
  • [41] Some dynamic problems of structural fracture mechanics
    Morozov, NF
    Petrov, YV
    ADVANCES IN FRACTURE RESEARCH, VOLS 1-6, 1997, : 2845 - 2852
  • [42] SOME GENERAL PROBLEMS OF MECHANICS OF BRITTLE FRACTURE
    KOSTROV, BV
    NIKITIN, LV
    ARCHIWUM MECHANIKI STOSOWANEJ, 1970, 22 (06): : 749 - &
  • [43] A machine learning approach to fracture mechanics problems
    Liu, Xing
    Athanasiou, Christos E.
    Padture, Nitin P.
    Sheldon, Brian W.
    Gao, Huajian
    ACTA MATERIALIA, 2020, 190 : 105 - 112
  • [45] A Newton algorithm for solving non-linear problems in mechanics of structures under complex loading histories
    Arzt, M
    Brocks, W
    Mohr, T
    MULTIAXIAL FATIGUE AND DEFORMATION: TESTING AND PREDICTION, 2000, 1387 : 126 - 135
  • [46] A Newton algorithm for solving non-linear problems in mechanics of structures under complex loading histories
    Arzt, Markus
    Brocks, Wolfgang
    Mohr, Tainer
    ASTM Special Technical Publication, 2000, (1387): : 126 - 135
  • [47] Solving linear and nonlinear three-dimensional problems of fracture mechanics by a semi-analytic finite element method. Part 1. Theoretical background and a study of efficiency of fem procedure for solving three-dimensional problems of fracture mechanics
    Bazhenov V.A.
    Gulyar A.I.
    Piskunov S.O.
    Sakharov A.S.
    Shkryl' A.A.
    Maksimyuk Yu.V.
    Strength of Materials, 2011, 43 (1) : 15 - 24
  • [48] SOLVING LINEAR AND NONLINEAR THREE-DIMENSIONAL PROBLEMS OF FRACTURE MECHANICS BY A SEMI-ANALYTIC FINITE ELEMENT METHOD. PART 1. THEORETICAL BACKGROUND AND A STUDY OF EFFICIENCY OF FEM PROCEDURE FOR SOLVING THREE-DIMENSIONAL PROBLEMS OF FRACTURE MECHANICS
    Bazhenov, V. A.
    Gulyar, A. I.
    Piskunov, S. O.
    Sakharov, A. S.
    Shkryl', A. A.
    Maksimyuk, Yu. V.
    STRENGTH OF MATERIALS, 2011, 43 (01) : 15 - 24
  • [49] SOLVING PROBLEMS OF COMPOSITE FRACTURE BY MULTISCALE MODELING
    Beaumont, Peter W. R.
    Sekine, Hideki
    JOURNAL OF MULTISCALE MODELLING, 2009, 1 (01) : 79 - 106
  • [50] Problems of development mechanics.
    Mangold, O
    NATURWISSENSCHAFTEN, 1928, 16 : 661 - 665