SPACE-VARIANT IMAGE-PROCESSING

被引:68
|
作者
WALLACE, RS
ONG, PW
BEDERSON, BB
SCHWARTZ, EL
机构
[1] AT&T BELL LABS,MIDDLETOWN,NJ 07748
[2] BELL COMMUN RES INC,MORRISTOWN,NJ
[3] BOSTON UNIV,DEPT COGNIT & NEURAL SYST,BOSTON,MA 02215
关键词
D O I
10.1007/BF01420796
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a graph-based approach to image processing, intended for use with images obtained from sensors having space variant sampling grids. The connectivity graph (CG) is presented as a fundamental framework for posing image operations in any kind of space variant sensor. Partially motivated by the observation that human vision is strongly space variant, a number of research groups have been experimenting with spade variant sensors. Such systems cover wide solid angles yet maintain high acuity in their central regions. Implementation of space variant systems pose at least two outstanding problems. First, such a system must be active, in order to utilize its high acuity region; second, there are significant image processing problems introduced by the nonuniform pixel size, shape and connectivity. Familiar image processing operations such as connected components, convolution, template matching, and even image translation, take on new and different forms when defined on space variant images. The present paper provides a general method for space variant image processing, based on a connectivity graph which represents the neighbor-relations in an arbitrarily structured sensor. We illustrate this approach with the following applications: (1) Connected components is reduced to its graph theoretic counterpart. We illustrate this on a logmap sensor, which possesses a difficult topology due to the branch cut associated with the complex logarithm function. (2) We show how to write local image operators in the connectivity graph that are independent of the sensor geometry. (3) We relate the connectivity graph to pyramids over irregular tessalations, and implement a local binarization operator in a 2-level pyramid. (4) Finally, we expand the connectivity graph into a structure we call a transformation graph, which represents the effects of geometric transformations in space variant image sensors. Using the transformation graph, we define an efficient algorithm for matching in the logmap images and solve the template matching problem for space variant images. Because of the very small number of pixels typical of logarithmic structured space variant arrays, the connectivity graph approach to image processing is suitable for real-time implementation, and provides a generic solution to a wide range of image processing applications with space variant sensors.
引用
收藏
页码:71 / 90
页数:20
相关论文
共 50 条
  • [31] Robust local restoration of space-variant blur image
    Lim, Jaeguyn
    Kang, Jooyoung
    Ok, Hyunwook
    DIGITAL PHOTOGRAPHY IV, 2008, 6817
  • [32] Design issues on CMOS space-variant image sensors
    Pardo, F
    Boluda, JA
    Perez, JJ
    Dierickx, B
    Scheffer, D
    ADVANCED FOCAL PLANE ARRAYS AND ELECTRONIC CAMERAS, 1996, 2950 : 98 - 107
  • [33] Disparity-based space-variant image deblurring
    Je, Changsoo
    Jeon, Hyeon Sang
    Son, Chang-Hwan
    Park, Hyung-Min
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (07) : 792 - 808
  • [34] Deblurring Space-Variant Blur by Adding Noisy Image
    Klapp, Iftach
    Sochen, Nir
    Mendlovic, David
    SCALE SPACE AND VARIATIONAL METHODS IN COMPUTER VISION, 2012, 6667 : 157 - +
  • [35] Space-variant generalised Gaussian regularisation for image restoration
    Lanza, A.
    Morigi, S.
    Pragliola, M.
    Sgallari, F.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2019, 7 (5-6): : 490 - 503
  • [36] Recent Advances in Space-Variant Deblurring and Image Stabilization
    Sorel, Michal
    Sroubek, Filip
    Flusser, Jan
    UNEXPLODED ORDNANCE DETECTION AND MITIGATION, 2009, : 259 - 272
  • [37] SPACE-VARIANT SYSTEM-ANALYSIS OF IMAGE MOTION
    SAWCHUK, AA
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1973, 63 (09) : 1052 - 1063
  • [38] Representation is space-variant
    Bonmassar, G
    Schwartz, EL
    BEHAVIORAL AND BRAIN SCIENCES, 1998, 21 (04) : 469 - +
  • [39] Space-variant model fitting and selection for image information extraction
    Soccorsi, Matteo
    Quartulli, Marco
    Datcu, Mihai
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2006, 872 : 358 - +
  • [40] Response properties of a foveated space-variant CMOS image sensor
    Pardo, F
    Boluda, JA
    Perez, JJ
    Felici, S
    Dierickx, B
    Scheffer, D
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 1, 1996, : 373 - 376