ADLER-KOSTANT-SYMS THEOREM AND SUPERSYMMETRIC INTEGRABLE SYSTEMS

被引:0
|
作者
SEN, DC
CHOWDHURY, AR
机构
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Adler, Kostant, and Syms theorem has been used to construct integrable nonlinear dynamical systems involving both bosonic and fermionic variables. Explicit forms of the equations are displayed in case of two super Lie Algebra OSPU(1,1/1) and S1(2/2). Integrability is proved by explicit construction of higher order conserved quantities.
引用
收藏
页码:1884 / 1891
页数:8
相关论文
共 50 条
  • [21] On the Supersymmetric Spectra of two Planar Integrable Quantum Systems
    Gonzalez Leon, M. A.
    Mateos Guilarte, J.
    Senosiain, M. J.
    de la Torre Mayado, M.
    ALGEBRAIC ASPECTS OF DARBOUX TRANSFORMATIONS, QUANTUM INTEGRABLE SYSTEMS AND SUPERSYMMETRIC QUANTUM MECHANICS, 2012, 563 : 73 - +
  • [22] Supersymmetric quantum spin chains and classical integrable systems
    Zengo Tsuboi
    Anton Zabrodin
    Andrei Zotov
    Journal of High Energy Physics, 2015
  • [23] Supersymmetric quantum spin chains and classical integrable systems
    Tsuboi, Zengo
    Zabrodin, Anton
    Zotov, Andrei
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (05):
  • [24] SUPERSYMMETRIC INTEGRABLE SYSTEMS ASSOCIATED WITH KdV AND MKdV EQUATIONS
    Wang, Peng
    Zhang, Meng-Xia
    REPORTS ON MATHEMATICAL PHYSICS, 2013, 72 (02) : 253 - 262
  • [25] On a theorem of Halphen and its application to integrable systems
    Gesztesy, F
    Unterkofler, K
    Weikard, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 251 (02) : 504 - 526
  • [26] Fluctuation theorem for quasi-integrable systems
    Goldfriend, T.
    Kurchan, J.
    EPL, 2018, 124 (01)
  • [27] Supersymmetric integrable systems from geodesic flows on superconformal groups
    C. Devchand
    J. Schiff
    Theoretical and Mathematical Physics, 2000, 123 : 563 - 568
  • [28] Supersymmetric Integrable Systems in (2 + 1) Dimensions and Their Backlund Transformation
    Mousumi Saha
    A. Roy Chowdhury
    International Journal of Theoretical Physics, 1999, 38 : 2037 - 2047
  • [29] Supersymmetric integrable systems from geodesic flows on superconformal groups
    Devchand, C
    Schiff, J
    THEORETICAL AND MATHEMATICAL PHYSICS, 2000, 123 (02) : 563 - 568
  • [30] N=2 supersymmetric gauge theories and quantum integrable systems
    Luo, Yuan
    Tan, Meng-Chwan
    Yagi, Junya
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (03):