Continuous rotating detonation engine fueled by ammonia

被引:16
|
作者
Huang, Si-Yuan [1 ]
Zhou, Jin [1 ]
Liu, Shi-Jie [1 ]
Peng, Hao-Yang [1 ]
Yuan, Xue-Qiang [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Sci & Technol Scramjet Lab, Changsha 410073, Hunan, Peoples R China
关键词
Ammonia; Continuous rotating detonation; Hollow chamber; Optical observation; PINTLE INJECTOR; AIR MIXTURES; EMISSIONS; COMBUSTION; METHANE; WAVE;
D O I
10.1016/j.energy.2022.123911
中图分类号
O414.1 [热力学];
学科分类号
摘要
As a carbon-free fuel, ammonia has attracted increasing interests while the corresponding utilizations are still limited. In this paper, ammonia-oxygen continuous rotating detonation (CRD) was firstly proposed and realized in the hollow chamber with Laval nozzle. The formation process and propagation characteristics were investigated through pressure measurement and optical observation. The CRD wave formation time increased with the nozzle contraction ratio, which was mainly attributed to the slower injection recovery process under the higher chamber pressure. The operation range was large, and the CRD wave propagated in single-wave mode with the velocity of 1806 m/s in the chosen test. The propagation velocity did not increase continuously as the equivalence ratio increased, which could be attributed to the changeable reaction mechanisms and the slow heat release of ammonia. The coupling of ammonia injection and CRD wave propagation was analyzed under both supersonic and subsonic injection conditions. The synchronous fluctuations of the pressure in ammonia plenum and the intensity of detonation waves proved that the coupling was very tight under subsonic injection condition. This paper was beneficial to the improvement of the detonation theory, and it provided an efficient approach to the utilization of ammonia.(c) 2022 Published by Elsevier Ltd.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Numerical investigation for rotating detonation engine
    Ma, Hu
    Wu, Xiao-Song
    Wang, Dong
    Xie, Ai-Yuan
    Tuijin Jishu/Journal of Propulsion Technology, 2012, 33 (05): : 820 - 825
  • [22] Nozzle Design for Rotating Detonation Engine
    Li, Rui
    Xu, Jinglei
    Huang, Shuai
    JOURNAL OF PROPULSION AND POWER, 2022, 38 (05) : 849 - 865
  • [23] Analysis of Rotating Detonation Wave Engine
    Ramanujachari, V
    Preethi, Amrutha P.
    INDIAN JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2023, 30 (02) : 274 - 282
  • [24] Thermodynamic model of a rotating detonation engine
    Nordeen, C. A.
    Schwer, D.
    Schauer, F.
    Hoke, J.
    Barber, Th.
    Cetegen, B.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2014, 50 (05) : 568 - 577
  • [25] Thermodynamic model of a rotating detonation engine
    C. A. Nordeen
    D. Schwer
    F. Schauer
    J. Hoke
    Th. Barber
    B. Cetegen
    Combustion, Explosion, and Shock Waves, 2014, 50 : 568 - 577
  • [26] Simulation of rotating detonation engine by OpenFOAM
    Thien Xuan Dinh
    Yoshida, Masatake
    Ishikura, Shuichi
    SCIENCE AND TECHNOLOGY OF ENERGETIC MATERIALS, 2019, 80 (1-2) : 68 - 71
  • [27] Feasibility Study of Pulse Detonation Engine Fueled by Biogas
    Dairobi, G.
    Wahid, Mazlan A.
    Inuwa, I. M.
    ADVANCES IN THERMOFLUIDS, 2013, 388 : 257 - 261
  • [28] Numerical investigation on detonation velocity in rotating detonation engine chamber
    Fujii, Jumpei
    Kumazawa, Yoshiki
    Matsuo, Akiko
    Nakagami, Soma
    Matsuoka, Ken
    Kasahara, Jiro
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2017, 36 (02) : 2665 - 2672
  • [29] Numerical investigation of detonation initiation in a modeled rotating detonation engine
    Han, Chao
    Bian, Jing
    Shi, Baolu
    Tian, Cheng
    Zhao, Majie
    PHYSICS OF FLUIDS, 2024, 36 (01)
  • [30] Numerical research on flow field structure and droplets distribution of kerosene-fueled rotating detonation ramjet engine
    Yushan, Zheng
    Yu, Liu
    Chao, Wang
    Yitian, Wang
    Aerospace Science and Technology, 155