A PRECISE ESTIMATION METHOD FOR LOCATIONS IN AN INVERSE LOGARITHMIC POTENTIAL PROBLEM FOR POINT MASS MODELS

被引:29
|
作者
OHE, T [1 ]
OHNAKA, K [1 ]
机构
[1] OSAKA UNIV,OSAKA,JAPAN
关键词
INVERSE LOGARITHMIC POTENTIAL PROBLEM; POINT MASS MODEL; ESTIMATION OF LOCATION; DISCRETE FOURIER TRANSFORM; NUMERICAL METHOD; ERROR ESTIMATE;
D O I
10.1016/0307-904X(94)90306-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A numerical method is discussed for an inverse logarithmic potential problem for a point mass model. We first show the relation between locations of point masses and Fourier expansion of the logarithmic potential, and show a method using discrete Fourier coefficients. Next a modified method is proposed based on a property of the discrete Fourier transform of the logarithmic potential. We give error estimates for our modified method, and compare it with the method using only discrete Fourier coefficients. Numerical examples illustrate the applicability and advantages of our modified method
引用
收藏
页码:446 / 452
页数:7
相关论文
共 50 条
  • [21] POINT (DIPOLE) SOLUTIONS OF INVERSE POTENTIAL FIELD PROBLEMS - MASS-PRESSING METHOD
    ZIDAROV, DP
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1972, 25 (10): : 1347 - 1350
  • [22] Local logarithmic stability of an inverse coefficient problem for a singular heat equation with an inverse-square potential
    Qin, Xue
    Li, Shumin
    APPLICABLE ANALYSIS, 2023, 102 (07) : 1995 - 2017
  • [23] A new reconstruction method for the inverse potential problem
    Canelas, Alfredo
    Laurain, Antoine
    Novotny, Antonio A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 268 : 417 - 431
  • [24] DETERMINATION OF LOCATIONS OF POINT-LIKE MASSES IN AN INVERSE SOURCE PROBLEM OF THE POISSON EQUATION
    OHE, T
    OHNAKA, K
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 54 (02) : 251 - 261
  • [25] Inverse method for estimation of thermal properties of mass concrete
    Matsui, Kunihito
    Nishida, Noriyuki
    Dobashi, Yoshireru
    Ushioda, Katsushi
    Transactions of the Japan Concrete Institute, 1994, 16 : 131 - 138
  • [26] An Inverse Problem Approach for Parameter Estimation of Cardiovascular System Models
    Yang, Xu
    Leandro, Jorge S.
    Cordeiro, Thiago D.
    Lima, Antonio M. N.
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 5642 - 5645
  • [27] Method of lines solutions of the parabolic inverse problem with an overspecification at a point
    Dehghan, Mehdi
    Shakeri, Fatemeh
    NUMERICAL ALGORITHMS, 2009, 50 (04) : 417 - 437
  • [28] Method of lines solutions of the parabolic inverse problem with an overspecification at a point
    Mehdi Dehghan
    Fatemeh Shakeri
    Numerical Algorithms, 2009, 50 : 417 - 437
  • [29] ON THE DUALITY OF THE POTENTIAL METHOD AND THE POINT SOURCE METHOD IN INVERSE SCATTERING PROBLEMS
    Liu, Jijun
    Potthast, Roland
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2009, 21 (02) : 297 - 315
  • [30] Proximal Point Methods for the Inverse Problem of Identifying Parameters in Beam Models
    Jadamba, B.
    Khan, A. A.
    Paulhamus, M.
    Sama, M.
    EMERGING APPLICATIONS OF WAVELET METHODS, 2012, 1463 : 16 - 38