ON THE EVALUATION OF RATIONAL FUNCTIONS IN INTERVAL ARITHMETIC

被引:7
|
作者
ALEFELD, G [1 ]
ROKNE, JG [1 ]
机构
[1] UNIV CALGARY,DEPT COMP SCI,CALGARY T2N 1N4,ALBERTA,CANADA
关键词
D O I
10.1137/0718059
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:862 / 870
页数:9
相关论文
共 50 条
  • [21] BOUNDARY IMPLICATIONS FOR INTERVAL POSITIVE RATIONAL FUNCTIONS
    BOSE, NK
    DELANSKY, JF
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1989, 36 (03): : 454 - 458
  • [22] Recurrence and asymptotics for orthonormal rational functions on an interval
    Deckers, Karl
    Bultheel, Adhemar
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2009, 29 (01) : 1 - 23
  • [23] ROBUST (STRICTLY) POSITIVE INTERVAL RATIONAL FUNCTIONS
    SHI, YQ
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1991, 38 (05): : 552 - 554
  • [24] DIFFERENTIAL CALCULUS FOR INTERVAL-VALUED FUNCTIONS BASED ON EXTENDED INTERVAL ARITHMETIC
    MARKOV, SM
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1977, 30 (10): : 1377 - 1380
  • [25] On range evaluation of polynomials by applying interval arithmetic
    Miyajima, S
    Kashiwagi, M
    LARGE-SCALE SCIENTIFIC COMPUTING, 2003, 2907 : 254 - 261
  • [26] Gradual interval arithmetic and fuzzy interval arithmetic
    Boukezzoula, Reda
    Foulloy, Laurent
    Coquin, Didier
    Galichet, Sylvie
    GRANULAR COMPUTING, 2021, 6 (02) : 451 - 471
  • [27] Gradual interval arithmetic and fuzzy interval arithmetic
    Reda Boukezzoula
    Laurent Foulloy
    Didier Coquin
    Sylvie Galichet
    Granular Computing, 2021, 6 : 451 - 471
  • [29] PRESBURGER ARITHMETIC, RATIONAL GENERATING FUNCTIONS, AND QUASI-POLYNOMIALS
    Woods, Kevin
    JOURNAL OF SYMBOLIC LOGIC, 2015, 80 (02) : 433 - 449
  • [30] PRIMITIVE LATTICE POINTS IN RATIONAL ELLIPSES AND RELATED ARITHMETIC FUNCTIONS
    NOWAK, WG
    MONATSHEFTE FUR MATHEMATIK, 1988, 106 (01): : 57 - 63