ROBUST PRINCIPAL COMPONENT ANALYSIS BY PROJECTION PURSUIT

被引:37
|
作者
XIE, YL [1 ]
WANG, JH [1 ]
LIANG, YZ [1 ]
SUN, LX [1 ]
SONG, XH [1 ]
YU, RQ [1 ]
机构
[1] HUNAN UNIV, DEPT CHEM & CHEM ENGN, CHANGSHA 410082, PEOPLES R CHINA
关键词
PRINCIPAL COMPONENT ANALYSIS; PROJECTION PURSUIT; SIMULATED ANNEALING ALGORITHM; ROBUST STATISTICS;
D O I
10.1002/cem.1180070606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal component analysis (PCA) is a widely used technique in chemometrics. The classical PCA method is, unfortunately, non-robust, since the variance is adopted as the objective function. In this paper, projection pursuit (PP) is used to carry out PCA with a criterion which is more robust than the variance. In addition, the generalized simulated annealing (GSA) algorithm is introduced as an optimization procedure in the process of PP calculation to guarantee the global optimum. The results for simulated data sets show that PCA via PP is resistant to the deviation of the error distribution from the normal one. The method is especially recommended for use in cases with possible outlier(s) existing in the data.
引用
收藏
页码:527 / 541
页数:15
相关论文
共 50 条
  • [41] Robust Multilinear Principal Component Analysis
    Inoue, Kohei
    Hara, Kenji
    Urahama, Kiichi
    2009 IEEE 12TH INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2009, : 591 - 597
  • [42] Robust Stochastic Principal Component Analysis
    Goes, John
    Zhang, Teng
    Arora, Raman
    Lerman, Gilad
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 33, 2014, 33 : 266 - 274
  • [43] Robust Principal Component Analysis on Graphs
    Shahid, Nauman
    Kalofolias, Vassilis
    Bresson, Xavier
    Bronsteint, Michael
    Vandergheynst, Pierre
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2812 - 2820
  • [44] Robust Kernel Principal Component Analysis
    Huang, Su-Yun
    Yeh, Yi-Ren
    Eguchi, Shinto
    NEURAL COMPUTATION, 2009, 21 (11) : 3179 - 3213
  • [45] Inductive Robust Principal Component Analysis
    Bao, Bing-Kun
    Liu, Guangcan
    Xu, Changsheng
    Yan, Shuicheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2012, 21 (08) : 3794 - 3800
  • [46] Robust Sparse Principal Component Analysis
    Croux, Christophe
    Filzmoser, Peter
    Fritz, Heinrich
    TECHNOMETRICS, 2013, 55 (02) : 202 - 214
  • [47] A review on robust principal component analysis
    Lee, Eunju
    Park, Mingyu
    Kim, Choongrak
    KOREAN JOURNAL OF APPLIED STATISTICS, 2022, 35 (02) : 327 - 333
  • [48] Bayesian Robust Principal Component Analysis
    Ding, Xinghao
    He, Lihan
    Carin, Lawrence
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (12) : 3419 - 3430
  • [49] Multilinear robust principal component analysis
    Shi, Jia-Rong
    Zhou, Shui-Sheng
    Zheng, Xiu-Yun
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2014, 42 (08): : 1480 - 1486
  • [50] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14