SOME GROUPS WHOSE S3-SUBGROUPS HAVE MAXIMAL CLASS

被引:1
|
作者
CLINE, E
机构
关键词
D O I
10.1017/S0027763000014057
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
下载
收藏
页码:55 / &
相关论文
共 50 条
  • [21] FINITE GROUPS WHOSE SECOND MAXIMAL SUBGROUPS ARE H-QC-SUBGROUPS
    Zhong, Xianggui
    Li, Shirong
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (06) : 2121 - 2126
  • [22] On groups whose all proper subgroups have Chernikov derived subgroups
    Semko N.N.
    Yarovaya O.A.
    Journal of Mathematical Sciences, 2011, 175 (2) : 186 - 191
  • [23] Finite groups whose all second maximal subgroups are cyclic
    Ma, Li
    Meng, Wei
    Ma, Wanqing
    OPEN MATHEMATICS, 2017, 15 : 611 - 615
  • [24] Finite Groups Whose n-Maximal Subgroups Are Modular
    Huang, J.
    Hu, B.
    Zheng, X.
    SIBERIAN MATHEMATICAL JOURNAL, 2018, 59 (03) : 556 - 564
  • [25] Finite groups whose n-maximal subgroups are σ-subnormal
    Wenbin Guo
    Alexander N. Skiba
    Science China Mathematics, 2019, 62 : 1355 - 1372
  • [26] Finite Groups Whose n-Maximal Subgroups Are Modular
    J. Huang
    B. Hu
    X. Zheng
    Siberian Mathematical Journal, 2018, 59 : 556 - 564
  • [27] On a class of groups with given cofactors of maximal subgroups
    Avdashkova, L. P.
    Kamornikov, S. F.
    MATHEMATICAL NOTES, 2010, 87 (5-6) : 601 - 607
  • [28] On a class of groups with given cofactors of maximal subgroups
    L. P. Avdashkova
    S. F. Kamornikov
    Mathematical Notes, 2010, 87 : 601 - 607
  • [29] Finite groups whose n-maximal subgroups are σ-subnormal
    Guo, Wenbin
    Skiba, Alexander N.
    SCIENCE CHINA-MATHEMATICS, 2019, 62 (07) : 1355 - 1372
  • [30] ON P-GROUPS WHOSE MAXIMAL-SUBGROUPS ARE ISOMORPHIC
    MANN, A
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1995, 59 : 143 - 147