ROTONS AND THE GROSS-PITAEVSKII EQUATION

被引:0
|
作者
ICHIYANAGI, M
机构
关键词
D O I
10.1016/0375-9601(80)90328-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:95 / 97
页数:3
相关论文
共 50 条
  • [21] Rigorous derivation of the Gross-Pitaevskii equation
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    PHYSICAL REVIEW LETTERS, 2007, 98 (04)
  • [22] A critique on the misuse of the Gross-Pitaevskii equation
    Geltman, Sydney
    EPL, 2009, 87 (01)
  • [23] Quantitative Derivation of the Gross-Pitaevskii Equation
    Benedikter, Niels
    de Oliveira, Gustavo
    Schlein, Benjamin
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2015, 68 (08) : 1399 - 1482
  • [24] The stochastic Gross-Pitaevskii equation: II
    Gardiner, CW
    Davis, MJ
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2003, 36 (23) : 4731 - 4753
  • [25] Gross-Pitaevskii equation: Variational approach
    Perez, JCD
    Trallero-Giner, C
    Richard, VL
    Trallero-Herrero, C
    Birman, JL
    PHYSICA STATUS SOLIDI C - CONFERENCE AND CRITICAL REVIEWS, VOL 2, NO 10, 2005, 2 (10): : 3665 - 3668
  • [26] The Cauchy problem for the Gross-Pitaevskii equation
    Gerard, P.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2006, 23 (05): : 765 - 779
  • [27] A symplectic scheme of Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 552 - 553
  • [28] The inverse problem for the Gross-Pitaevskii equation
    Malomed, Boris A.
    Stepanyants, Yury A.
    CHAOS, 2010, 20 (01)
  • [29] SUPERCONVERGENCE OF TIME INVARIANTS FOR THE GROSS-PITAEVSKII EQUATION
    Henning, Patrick
    Waernegard, Johan
    MATHEMATICS OF COMPUTATION, 2022, 91 (334) : 509 - 555
  • [30] Multisymplectic spectral methods for the Gross-Pitaevskii equation
    Islas, AL
    Schober, CM
    COMPUTATIONAL SCIENCE-ICCS 2002, PT III, PROCEEDINGS, 2002, 2331 : 486 - 495