The Complement of Binary Klein Quadric as a Combinatorial Grassmannian

被引:2
|
作者
Saniga, Metod [1 ,2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia
来源
MATHEMATICS | 2015年 / 3卷 / 02期
基金
奥地利科学基金会;
关键词
combinatorial Grassmannian; binary Klein quadric; Conwell heptad; three-qubit Pauli group;
D O I
10.3390/math3020481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a hyperbolic quadric of PG(5, 2), there are 28 points off this quadric and 56 lines skew to it. It is shown that the (28(6), 56(3))-configuration formed by these points and lines is isomorphic to the combinatorial Grassmannian of type G(2)(8). It is also pointed out that a set of seven points of G(2)(8) whose labels share a mark corresponds to a Conwell heptad of PG(5, 2). Gradual removal of Conwell heptads from the (28(6), 56(3))-configuration yields a nested sequence of binomial configurations identical with part of that found to be associated with Cayley-Dickson algebras (arXiv:1405.6888).
引用
收藏
页码:481 / 486
页数:6
相关论文
共 50 条
  • [41] Combinatorial numbers in binary recurrences
    Kovacs, Tuende
    PERIODICA MATHEMATICA HUNGARICA, 2009, 58 (01) : 83 - 98
  • [42] Dyck Paths, Binary Words, and Grassmannian Permutations Avoiding an Increasing Pattern
    Menon, Krishna
    Singh, Anurag
    ANNALS OF COMBINATORICS, 2024, 28 (03) : 871 - 887
  • [43] THE FUNDAMENTAL GROUP OF THE COMPLEMENT FOR KLEIN ARRANGEMENT OF 21 LINES
    NARUKI, I
    TOPOLOGY AND ITS APPLICATIONS, 1990, 34 (02) : 167 - 181
  • [44] MODIFIED QUADRIC ANALYSIS IN PREDICTION WITH MIXED BINARY AND CONTINUOUS EXPLANATORY VARIABLES
    TALWALKER, S
    RAO, BR
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1990, 26 (01) : 47 - 57
  • [45] Resolution and the Binary Encoding of Combinatorial Principles
    Dantchev, Stefan
    Galesi, Nicola
    Martin, Barnaby
    34TH COMPUTATIONAL COMPLEXITY CONFERENCE (CCC 2019), 2019, 137
  • [46] Filtering LiDAR Data Using Binary Quadric Trend Surface and Morphological Approaches
    Li, Feng
    Cui, Ximin
    Zhang, Ling
    Shan, Shuwei
    Song, Kunlun
    ADVANCES IN INDUSTRIAL AND CIVIL ENGINEERING, PTS 1-4, 2012, 594-597 : 2361 - 2366
  • [47] Combinatorial study of stable categories of graded Cohen–Macaulay modules over skew quadric hypersurfaces
    Akihiro Higashitani
    Kenta Ueyama
    Collectanea Mathematica, 2022, 73 : 43 - 54
  • [48] Lagrangian embeddings of the Klein bottle and combinatorial properties of mapping class groups
    Shevchishin, V. V.
    IZVESTIYA MATHEMATICS, 2009, 73 (04) : 797 - 859
  • [49] Logical complement - new method for control of combinatorial circuit
    Gessel, M.
    Morozov, A.V.
    Sapozhnikov, V.V.
    Sapozhnikov, Vl.V.
    Avtomatika i Telemekhanika, 2003, (01): : 167 - 176
  • [50] Klein tunneling of Dirac solitons in binary waveguide arrays
    Quang Nguyen-The
    Tran, Truong X.
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2020, 37 (06) : 1911 - 1920