The Complement of Binary Klein Quadric as a Combinatorial Grassmannian

被引:2
|
作者
Saniga, Metod [1 ,2 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Slovak Acad Sci, Astron Inst, SK-05960 Tatranska Lomnica, Slovakia
来源
MATHEMATICS | 2015年 / 3卷 / 02期
基金
奥地利科学基金会;
关键词
combinatorial Grassmannian; binary Klein quadric; Conwell heptad; three-qubit Pauli group;
D O I
10.3390/math3020481
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a hyperbolic quadric of PG(5, 2), there are 28 points off this quadric and 56 lines skew to it. It is shown that the (28(6), 56(3))-configuration formed by these points and lines is isomorphic to the combinatorial Grassmannian of type G(2)(8). It is also pointed out that a set of seven points of G(2)(8) whose labels share a mark corresponds to a Conwell heptad of PG(5, 2). Gradual removal of Conwell heptads from the (28(6), 56(3))-configuration yields a nested sequence of binomial configurations identical with part of that found to be associated with Cayley-Dickson algebras (arXiv:1405.6888).
引用
收藏
页码:481 / 486
页数:6
相关论文
共 50 条