MODULI SPACES OF QUADRATIC-DIFFERENTIALS

被引:91
|
作者
VEECH, WA
机构
[1] Department of Mathematics, Rice University, Houston, 77251, TX
来源
关键词
D O I
10.1007/BF02789200
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The cotangent bundle of T(g, n) is a union of complex analytic subvarieties, V(pi), the level sets of the function "singularity pattern" of quadratic differentials. Each V(pi) is endowed with a natural affine complex structure and volume element. The latter contracts to a real analytic volume element, mu-pi, on the unit hypersurface, V1(pi), for the Teichmuller metric. mu-pi is invariant under the pure mapping class group, GAMMA-(g, n), and a certain class of functions is proved to be L(p)(mu-pi), 0 < p < 1, over the moduli space V1(pi)/GAMMA-(g, n). In particular, mu-pi(V1(pi)/GAMMA-(g, n)) < infinity, a statement which generalizes a theorem by H. Masur.
引用
收藏
页码:117 / 171
页数:55
相关论文
共 50 条