CONTINUOUS WAVELET DECOMPOSITIONS, MULTIRESOLUTION, AND CONTRAST ANALYSIS

被引:35
|
作者
DUVALDESTIN, M
MUSCHIETTI, MA
TORRESANI, B
机构
[1] UNIV LA PLATA,DEPT MATEMAT,RA-1900 LA PLATA,ARGENTINA
[2] CTR PHYS THEOR,CNRS,F-13288 MARSEILLE 09,FRANCE
关键词
WAVELETS; MULTIRESOLUTION ANALYSIS; CONSTRAST ANALYSIS;
D O I
10.1137/0524045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A continuous version of multiresolution analysis is described, starting from usual continuous wavelet decompositions. Scale discretization leads to decompositions into functions of arbitrary bandwidth, satisfying QMF-like conditions. Finally, a nonlinear multiresolution scheme is described, providing multiplicative reconstruction formulas.
引用
收藏
页码:739 / 755
页数:17
相关论文
共 50 条
  • [41] Gaussian pyramid wavelet transform for multiresolution analysis of images
    Olkkonen, H
    Pesola, P
    GRAPHICAL MODELS AND IMAGE PROCESSING, 1996, 58 (04): : 394 - 398
  • [42] M-bands wavelet multiresolution analysis of assets
    BenGhoul, Maroua
    Ayadi, Walid
    Alwadi, Sadam
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 699 - 721
  • [43] p-Adic Multiresolution Analysis and Wavelet Frames
    S. Albeverio
    S. Evdokimov
    M. Skopina
    Journal of Fourier Analysis and Applications, 2010, 16 : 693 - 714
  • [44] A wavelet multiresolution analysis for location of faults on transmission lines
    Chanda, D
    Kishore, NK
    Sinha, AK
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2003, 25 (01) : 59 - 69
  • [45] Multiresolution wavelet coarsening and analysis of transport in heterogeneous media
    Ebrahimi, F
    Sahimi, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 316 (1-4) : 160 - 188
  • [46] A wavelet multiresolution analysis for spatio-temporal signals
    Burns, TJ
    Rogers, SK
    Oxley, ME
    Ruck, DW
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (02) : 628 - 649
  • [47] Rational multiresolution analysis and fast wavelet transform: application to wavelet shrinkage denoising
    Baussard, A
    Nicolier, F
    Truchetet, F
    SIGNAL PROCESSING, 2004, 84 (10) : 1735 - 1747
  • [48] COMPRESSION OF WAVELET DECOMPOSITIONS
    DEVORE, RA
    JAWERTH, B
    POPOV, V
    AMERICAN JOURNAL OF MATHEMATICS, 1992, 114 (04) : 737 - 785
  • [49] Wavelet decompositions on a manifold
    Demjanovich Yu.K.
    Zimin A.V.
    Journal of Mathematical Sciences, 2008, 150 (2) : 1929 - 1936
  • [50] Measures in wavelet decompositions
    Jorgensen, PET
    ADVANCES IN APPLIED MATHEMATICS, 2005, 34 (03) : 561 - 590