PECULIARITIES IN A GENERALIZED METHOD OF FINITE ELEMENTS AND THEIR APPLICATION IN GEOMETRICALLY NONLINEAR PLATE PROBLEMS

被引:0
|
作者
KOLAR, V
机构
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
下载
收藏
页码:T205 / &
相关论文
共 50 条
  • [41] A survey of the core-congruential formulation for geometrically nonlinear TL finite elements
    Felippa, C. A.
    Crivelli, L. A.
    Haugen, B.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 1994, 1 (01) : 1 - 48
  • [42] Convergence of the Method of Consecutive Approximations in Geometrically Nonlinear Problems.
    Kayuk, Ya.F.
    Prikladnaya Mekhanika, 1973, 9 (09): : 104 - 111
  • [43] Application of the meshless generalized finite difference method to inverse heat source problems
    Gu, Yan
    Wang, Lei
    Chen, Wen
    Zhang, Chuanzeng
    He, Xiaoqiao
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 : 721 - 729
  • [44] Comparison of finite element and finite volume methods application in geometrically nonlinear stress analysis
    Fallah, NA
    Bailey, C
    Cross, M
    Taylor, GA
    APPLIED MATHEMATICAL MODELLING, 2000, 24 (07) : 439 - 455
  • [45] Finite element analysis of plate bending problems using transition plate elements
    Kanber, B.
    Bozkurt, O. Y.
    Sheet Metal 2005, 2005, 6-8 : 713 - 720
  • [46] EXTENSIONS OF THE TWO-SCALE GENERALIZED FINITE ELEMENT METHOD TO NONLINEAR FRACTURE PROBLEMS
    Gupta, Varun
    Kim, Dae-Jin
    Duartel, C. Armando
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2013, 11 (06) : 581 - 596
  • [47] Generalized Method of Finite Integral Transformations in Linear and Nonlinear Static Problems for Shallow Shells
    Grigorenko Y.M.
    Bespalova O.I.
    Journal of Mathematical Sciences, 2023, 274 (5) : 618 - 640
  • [48] Peculiarities of Applying the Finite-Difference Method for Solving Nonlinear Problems of the Dynamics of Distributed Systems in a Flow
    I. Kaliukh
    O. Trofymchuk
    O. Lebid
    Cybernetics and Systems Analysis, 2023, 59 : 120 - 133
  • [49] ALGORITHMS ANALYSIS FOR SOLVING GEOMETRICALLY NONLINEAR MECHANICS PROBLEMS IN THE SCHEME OF THE SEMI-ANALYTICAL FINITE ELEMENT METHOD
    Solodey, I. I.
    Kozub, Y. H.
    Stryhun, R. L.
    Shovkivska, V. V.
    OPIR MATERIALIV I TEORIA SPORUD-STRENGTH OF MATERIALS AND THEORY OF STRUCTURES, 2022, (109): : 109 - 119
  • [50] SOLUTION OF MIXED BOUNDARY-PROBLEMS FOR A FINITE CRACKED REISSNER PLATE BY THE GENERALIZED VARIATIONAL METHOD
    CHEN, YH
    ENGINEERING FRACTURE MECHANICS, 1992, 41 (02) : 159 - 167