Bootstrapping Composite Quantile Regression

被引:0
|
作者
Seo, Kangmin [1 ]
Bang, Sungwan [2 ]
Jhun, Myoungshic [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul 136701, South Korea
[2] Korea Mil Acad, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Quantile regression; composite quantile regression; bootstrap;
D O I
10.5351/KJAS.2012.25.2.341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Composite quantile regression model is considered for iid error case. Since the regression coefficients are the same across different quantiles, composite quantile regression can be used to combine the strength across multiple quantile regression models. For the composite quantile regression, bootstrap method is examined for statistical inference including the selection of the number of quantiles and confidence intervals for the regression coefficients. Feasibility of the bootstrap method is demonstrated through a simulation study.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [41] Weighted composite quantile regression estimation of DTARCH models
    Jiang, Jiancheng
    Jiang, Xuejun
    Song, Xinyuan
    ECONOMETRICS JOURNAL, 2014, 17 (01): : 1 - 23
  • [42] Bayesian Regularized Regression Based on Composite Quantile Method
    Zhao, Wei-hua
    Zhang, Ri-quan
    Lu, Ya-zhao
    Liu, Ji-cai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 495 - 512
  • [43] Bayesian bridge and reciprocal bridge composite quantile regression
    Alsaadi, Zainab
    Alhamzawi, Rahim
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3571 - 3588
  • [44] Truncated composite quantile regression with covariates measurement errors
    Xu, Hongxia
    Qin, Mengting
    Fan, Guoliang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [45] Composite versus model-averaged quantile regression
    Bloznelis, Daumantas
    Claeskens, Gerda
    Zhou, Jing
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 32 - 46
  • [46] DISTRIBUTED SPARSE COMPOSITE QUANTILE REGRESSION IN ULTRAHIGH DIMENSIONS
    Chen, Canyi
    Gu, Yuwen
    Zou, Hui
    Zhu, Liping
    STATISTICA SINICA, 2023, 33 : 1143 - 1167
  • [47] Adaptive lasso penalised censored composite quantile regression
    Bang, Sungwan
    Cho, Hyungjun
    Jhun, Myoungshic
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (01) : 22 - 46
  • [48] Composite quantile regression for the receiver operating characteristic curve
    Duan, Xiaogang
    Zhou, Xiao-Hua
    BIOMETRIKA, 2013, 100 (04) : 889 - 900
  • [49] Optimal subsampling for composite quantile regression in big data
    Xiaohui Yuan
    Yong Li
    Xiaogang Dong
    Tianqing Liu
    Statistical Papers, 2022, 63 : 1649 - 1676
  • [50] Functional single-index composite quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhang, Jing
    METRIKA, 2023, 86 (05) : 595 - 603