Let M be a positive definite quadratic Z-module of rank m greater than or equal to 7 and T a finite set of primes containing 2 and those primes p for which M(p) is not unimodular. If N is a quadratic Z-module of rank 2 which is locally represented by M and if min(N) is sufficiently large then there exists a representation f:N --> M so that f approximates given local representations at T and f(N-p) is primitive in M(p) for all primes p is not an element of T. (C) 1995 Academic Press, Inc.
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Ju, Jangwon
Kim, Kyoungmin
论文数: 0引用数: 0
h-index: 0
机构:
Sungkyunkwan Univ, Dept Math, Suwon 16419, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Kim, Kyoungmin
Oh, Byeong-Kweon
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 08826, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaSeoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
机构:
Russian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, RussiaRussian Acad Sci, VA Steklov Math Inst, St Petersburg Branch, St Petersburg 196140, Russia