ELECTRONIC-PROPERTIES OF A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS

被引:7
|
作者
YOU, JQ [1 ]
YAN, JR [1 ]
YANG, QB [1 ]
机构
[1] ACAD SINICA, INST MET RES, ATOM IMAGING SOLIDS LAB, SHENYANG 110015, PEOPLES R CHINA
来源
关键词
D O I
10.1007/BF01390657
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Electronic properties of a class of one-dimensional quasiperiodic systems are studied by the extended Kohmoto-Kadanoff-Tang (KKT) renormalization-group method. The employed models are tight-binding diagonal and off-diagonal models. It is showed that the energy spectra of the quasiperiodic systems are Cantor-like, namely the spectra are self-similar and the energy gaps are every-where dense on the real E-line. © 1990 Springer-Verlag.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [31] Reducibility of one-dimensional quasi-periodic Schrodinger equations
    Geng, Jiansheng
    Zhao, Zhiyan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (03): : 436 - 453
  • [32] ELECTRONS AND STRUCTURE OF QUASI-PERIODIC ONE-DIMENSIONAL CHAINS
    SCHMIDT, K
    SPRINGBORG, M
    SYNTHETIC METALS, 1993, 57 (2-3) : 4473 - 4478
  • [33] One-dimensional quasi-periodic Schrodinger operators - Dynamical systems and spectral theory
    Eliasson, LH
    EUROPEAN CONGRESS OF MATHEMATICS, VOL I, 1998, 168 : 178 - 190
  • [34] EQUIVALENCE BETWEEN THE NIELSEN AND THE SCALING TRANSFORMATIONS IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    IGUCHI, K
    JOURNAL OF MATHEMATICAL PHYSICS, 1993, 34 (08) : 3481 - 3490
  • [35] SPECTRAL DENSITY CORRELATIONS AND EIGENFUNCTION FLUCTUATIONS IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    EVANGELOU, SN
    ECONOMOU, EN
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (29) : 5499 - 5513
  • [36] Optical properties of the quasi-periodic one-dimensional generalized multilayer Fibonacci structures
    Aissaoui, M.
    Zaghdoudi, J.
    Kanzari, M.
    Rezig, B.
    PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2006, 59 : 69 - 83
  • [37] Positive Lyapunov exponent and minimality for a class of one-dimensional quasi-periodic Schrodinger equations
    Bjerklöv, K
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 : 1015 - 1045
  • [38] Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals
    Wu, Ji-jiang
    Gao, Jin-xia
    OPTIK, 2012, 123 (11): : 986 - 988
  • [39] Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal
    Qingdao Key Laboratory of Terahertz Technology, College of Electronics, Communication and Physics, Shandong University of Science and Technology, Qingdao
    266510, China
    Opt Commun, (168-173):
  • [40] Optical properties of one-dimensional Fibonacci quasi-periodic graphene photonic crystal
    Zhang, Yuping
    Wu, Zhixin
    Cao, Yanyan
    Zhang, Huiyun
    OPTICS COMMUNICATIONS, 2015, 338 : 168 - 173