CONSTANT MEAN CURVATURE SURFACES IN EUCLIDEAN AND MINKOWSKI THREE-SPACES

被引:0
|
作者
Brander, David [1 ]
Rossman, Wayne [2 ]
Schmitt, Nicholas [3 ]
机构
[1] Tech Univ Denmark, Dept Math, Matemat Torve B-303, DK-2800 Lyngby, Denmark
[2] Kobe Univ, Fac Sci, Dept Math, Nada Ku, Kobe, Hyogo 6578501, Japan
[3] Univ Tubingen, Math Inst, GeometrieWerkstatt, D-72076 Tubingen, Germany
基金
日本学术振兴会;
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Spacelike constant mean curvature (CMC) surfaces in Minkowski 3-space L-3 have an infinite dimensional generalized Weierstrass representation. This is analogous to that given by Dorfmeister, Pedit and Wu for CMC surfaces in Euclidean space, replacing the group SU(2) with SU(1, 1). The non-compactness of the latter group, however, means that the Iwasawa decomposition of the loop group, used to construct the surfaces, is not global. The construction is described here, with an emphasis on the difference from the Euclidean case.
引用
收藏
页码:15 / 26
页数:12
相关论文
共 50 条