On convergence of a kind of complex nonlinear Bernstein operators

被引:0
|
作者
Karsli, Harun [1 ]
Unal, Esra [1 ]
机构
[1] Abant Izzet Baysal Univ, Fac Sci & Arts, Dept Math, TR-14280 Golkoy Bolu, Turkey
来源
关键词
Nonlinear Bernstein operators; Lipschitz condition; Voronovskaja-type result; compact disks;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present article deals with the approximation properties and Voronovskaja type results with quantitative estimates for a certain class of complex nonlinear Bernstein operators (NB(n)f) of the form (NB(n)f)(z) = Sigma(n)(k=0) p(k,n)(z)G(n) (f (k/n)), vertical bar z vertical bar <= 1 attached to analytic functions on compact disks.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [41] Convergence properties of newα-Bernstein-Kantorovich type operators
    Kumar, Ajay
    Senapati, Abhishek
    Som, Tanmoy
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024,
  • [42] Approximation by Chebyshevian Bernstein Operators versus Convergence of Dimension Elevation
    Rachid Ait-Haddou
    Marie-Laurence Mazure
    Constructive Approximation, 2016, 43 : 425 - 461
  • [43] Convergence of α-Bernstein-Durrmeyer operators about a collection of measures
    Kaur, Harmanjit
    Goyal, Meenu Rani
    MATHEMATICA SLOVACA, 2025, 75 (01) : 129 - 142
  • [44] ON THE PROPERTY OF MONOTONIC CONVERGENCE FOR MULTIVARIATE BERNSTEIN-TYPE OPERATORS
    ADELL, JA
    DELACAL, J
    SANMIGUEL, M
    JOURNAL OF APPROXIMATION THEORY, 1995, 80 (01) : 132 - 137
  • [45] On pointwise approximation properties of certain nonlinear Bernstein operators
    Altin, H. Erhan
    TBILISI MATHEMATICAL JOURNAL, 2019, 12 (02) : 47 - 58
  • [46] Some approximation properties of a certain nonlinear Bernstein operators
    Karsli, Harun
    Tiryaki, Ismail U.
    Altin, H. Erhan
    FILOMAT, 2014, 28 (06) : 1295 - 1305
  • [47] HARNACKS THEOREMS ON CONVERGENCE FOR NONLINEAR OPERATORS
    CALVERT, B
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (05): : 622 - 630
  • [49] A Voronovskaja-Type Theorem for a Kind of Durrmeyer-Bernstein-Stancu Operators
    Kantar, Ulku Dinlemez
    Ergelen, Gizem
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2019, 32 (04): : 1228 - 1236
  • [50] On the convergence of Lupa (p,q)-Bernstein operators via contraction principle
    Bin Jebreen, Haifa
    Mursaleen, Mohammad
    Ahasan, Mohd
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,