On convergence of a kind of complex nonlinear Bernstein operators

被引:0
|
作者
Karsli, Harun [1 ]
Unal, Esra [1 ]
机构
[1] Abant Izzet Baysal Univ, Fac Sci & Arts, Dept Math, TR-14280 Golkoy Bolu, Turkey
来源
关键词
Nonlinear Bernstein operators; Lipschitz condition; Voronovskaja-type result; compact disks;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present article deals with the approximation properties and Voronovskaja type results with quantitative estimates for a certain class of complex nonlinear Bernstein operators (NB(n)f) of the form (NB(n)f)(z) = Sigma(n)(k=0) p(k,n)(z)G(n) (f (k/n)), vertical bar z vertical bar <= 1 attached to analytic functions on compact disks.
引用
收藏
页码:259 / 265
页数:7
相关论文
共 50 条
  • [1] On Convergence of Certain Nonlinear Bernstein Operators
    Karsli, Harun
    Tiryaki, Ismail U.
    Altin, H. Erhan
    FILOMAT, 2016, 30 (01) : 141 - 155
  • [2] CONVERGENCE OF CERTAIN NONLINEAR COUNTERPART OF THE BERNSTEIN OPERATORS
    Karsli, Harun
    Altin, H. Erhan
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2015, 64 (01): : 75 - 86
  • [3] Convergence of rational Bernstein operators
    Render, Hermann
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 232 : 1076 - 1089
  • [4] Nonlinear Approximation: q-Bernstein Operators of Max-Product Kind
    Duman, Oktay
    INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 33 - 56
  • [5] Approximation of fuzzy numbers by nonlinear Bernstein operators of max-product kind
    Coroianu, Lucian
    Gal, Sorin G.
    Bede, Barnabas
    PROCEEDINGS OF THE 7TH CONFERENCE OF THE EUROPEAN SOCIETY FOR FUZZY LOGIC AND TECHNOLOGY (EUSFLAT-2011) AND LFA-2011, 2011, : 734 - 741
  • [6] A recursive algorithm for Bernstein operators of second kind
    Inoan, Daniela
    Rasa, Ioan
    NUMERICAL ALGORITHMS, 2013, 64 (04) : 699 - 706
  • [7] A recursive algorithm for Bernstein operators of second kind
    Daniela Inoan
    Ioan Raşa
    Numerical Algorithms, 2013, 64 : 699 - 706
  • [8] CONVERGENCE OF DERIVATIVES OF GENERALIZED BERNSTEIN OPERATORS
    Laiyi Zhu (People’s University of China
    Analysis in Theory and Applications, 2012, 28 (02) : 135 - 145
  • [9] Approximation by a new kind of(λ,μ)-Bernstein-Kantorovich operators
    Cai, Qing-Bo
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [10] Convergence of the Bernstein–Durrmeyer Operators in Variation Seminorm
    Harun Karsli
    Özlem Öksüzer Yılık
    Fatma Taşdelen Yeşildal
    Results in Mathematics, 2017, 72 : 1257 - 1270