Investigation of mechanical and surface properties of additively manufactured AlSi10Mg part produced through direct metal laser sintering

被引:0
|
作者
Soni, Harsh [1 ]
Limbasiya, Nandita [1 ]
Jain, Aryan [1 ]
Gill, Sukhjeet Singh [2 ]
Sahlot, Pankaj [1 ]
机构
[1] Pandit Deendayal Energy Univ, Sch Technol, Mech Engn, Gandhinagar, Gandhinagar 382426, Gujarat, India
[2] Indian Space Res Org ISRO, Space Applicat Ctr SAC, Ahmadabad, Gujarat, India
关键词
Additive manufacturing; Direct metal laser sintering; AlSi10Mg; Mechanical properties; Surface roughness; DOE: Design of experiments;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Additive manufacturing (AM) is a cutting-edge method of producing geometrically complex three-dimensional components. Conventional manufacturing has few limitations to build intricate shapes. AM solves the complexity issue by building components with layer-by-layer deposition method. Besides that, AM has less material wastage and superior structural characteristics. Direct Metal Laser Sintering (DMLS) is a powder bed fusion method to fabricate complex geometries. AlSi10Mg is used in a variety of structural applications due to its high strength, hardness, and dynamic characteristics. In this study, the mechanical and surface properties of additively manufactured AlSi10Mg parts by DMLS method have been investigated and compared with the properties of conventional casting samples. Mechanical and surface characteristics such as density, tensile strength, hardness, and surface roughness have been examined. The energy density of 56 J/mm(3) is applied to melt powder particles by keeping laser power 125 W, layer thickness 30 mu m, hatch space 135 mu m and scanning speed 550 mm/s. The average density of 96.70 % is obtained for AM manufactured AlSi10Mg samples. The tensile strength of 377 MPa with 5% elongation and Vickers hardness of 102.4 HV has been achieved for AM-built samples. The surface roughness of 6 Ra has been attained for as-built AM AlSi10Mg part. Mechanical properties were observed better in additively manufactured components as compared to conventionally casted aluminium alloy. This research study would help in the selection of process parameters to obtain better mechanical properties for additively manufactured compared to cast AlSi10Mg alloy. Copyright (c) 2021 Elsevier Ltd. All rights reserved.Selection and peer-review under responsibility of the scientific committee of the International Conference Additive Manufacturing and Advanced Materials-AM2 2021.
引用
收藏
页码:7204 / 7209
页数:6
相关论文
共 50 条
  • [21] Microstructural and mechanical properties of AlSi10Mg: Hybrid welding of additively manufactured and cast parts
    Krochmal, M.
    Rajan, A. Nammalvar Raja
    Moeini, G.
    Sajadifar, S. V.
    Wegener, T.
    Niendorf, T.
    JOURNAL OF MATERIALS RESEARCH, 2023, 38 (02) : 297 - 311
  • [22] Metallurgical investigations of laser remelted additively manufactured AlSi10Mg parts
    Schanz, J.
    Hofele, M.
    Ruck, S.
    Schubert, T.
    Hitzler, L.
    Schneider, G.
    Merkel, M.
    Riegel, H.
    MATERIALWISSENSCHAFT UND WERKSTOFFTECHNIK, 2017, 48 (05) : 463 - 476
  • [23] Effect of the Surface Finish on the Cyclic Behavior of Additively Manufactured AlSi10Mg
    Scurria, Matilde
    Moeller, Benjamin
    Wagener, Rainer
    Melz, Tobias
    TMS 2019 148TH ANNUAL MEETING & EXHIBITION SUPPLEMENTAL PROCEEDINGS, 2019, : 383 - 394
  • [24] Tensile Properties Characterization of AlSi10Mg Parts Produced by Direct Metal Laser Sintering via Nested Effects Modeling
    Palumbo, Biagio
    Del Re, Francesco
    Martorelli, Massimo
    Lanzotti, Antonio
    Corrado, Pasquale
    MATERIALS, 2017, 10 (02):
  • [25] Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC
    Li, Chonggui
    Sun, Shuai
    Zhang, Youfeng
    Liu, Chuanming
    Deng, Peiran
    Zeng, Ming
    Wang, Feifei
    Ma, Pan
    Li, Wenge
    Wang, You
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (5-8): : 3235 - 3246
  • [26] Effects of laser processing parameters on microstructure and mechanical properties of additively manufactured AlSi10Mg alloys reinforced by TiC
    Chonggui Li
    Shuai Sun
    Youfeng Zhang
    Chuanming Liu
    Peiran Deng
    Ming Zeng
    Feifei Wang
    Pan Ma
    Wenge Li
    You Wang
    The International Journal of Advanced Manufacturing Technology, 2019, 103 : 3235 - 3246
  • [27] Abrasive Fluidized Bed (AFB) finishing of AlSi10Mg substrates manufactured by Direct Metal Laser Sintering (DMLS)
    Atzeni, E.
    Barletta, M.
    Calignano, F.
    Luliano, L.
    Rubino, G.
    Tagliaferri, V
    ADDITIVE MANUFACTURING, 2016, 10 : 15 - 23
  • [28] The effect of texture on the anisotropy of thermophysical properties of additively manufactured AlSi10Mg
    Strumza, Einat
    Yeheskel, Ori
    Hayun, Shmuel
    ADDITIVE MANUFACTURING, 2019, 29
  • [29] Shock compression response of additively manufactured AlSi10Mg
    Specht, Paul E.
    Brown, Nathan P.
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (24)
  • [30] Fracture prediction of additively manufactured AlSi10Mg materials
    Irmak, E. F. Akbulut
    Troester, T.
    1ST INTERNATIONAL WORKSHOP ON PLASTICITY, DAMAGE AND FRACTURE OF ENGINEERING MATERIALS (IWPDF 2019), 2019, 21 : 190 - 197