ON A THEOREM IN GENERALISED FOURIER TRANSFORM

被引:1
|
作者
MITRA, SC
机构
来源
CANADIAN MATHEMATICAL BULLETIN | 1967年 / 10卷 / 05期
关键词
D O I
10.4153/CMB-1967-072-4
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
引用
收藏
页码:699 / &
相关论文
共 50 条
  • [21] A General Geometric Fourier Transform Convolution Theorem
    Bujack, Roxana
    Scheuermann, Gerik
    Hitzer, Eckhard
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (01) : 15 - 38
  • [22] Unified fractional Fourier transform and sampling theorem
    Erseghe, T
    Kraniauskas, P
    Cariolaro, G
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1999, 47 (12) : 3419 - 3423
  • [23] Miyachi’s Theorem for the Quaternion Fourier Transform
    Youssef El Haoui
    Said Fahlaoui
    Circuits, Systems, and Signal Processing, 2020, 39 : 2193 - 2206
  • [24] Beurling's theorem for the quaternion Fourier transform
    El Haoui, Youssef
    Fahlaoui, Said
    JOURNAL OF PSEUDO-DIFFERENTIAL OPERATORS AND APPLICATIONS, 2020, 11 (01) : 187 - 199
  • [25] An Improved Product Theorem for Fractional Fourier Transform
    Pooja Mohindru
    Rajesh Khanna
    S. S. Bhatia
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2012, 82 : 343 - 345
  • [26] Sampling Theorem and Discrete Fourier Transform on the Hyperboloid
    Calixto, M.
    Guerrero, J.
    Sanchez-Monreal, J. C.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2011, 17 (02) : 240 - 264
  • [27] Unlimited Sampling Theorem Based on Fractional Fourier Transform
    Zhao, Hui
    Li, Bing-Zhao
    FRACTAL AND FRACTIONAL, 2023, 7 (04)
  • [28] Sampling Theorem and Discrete Fourier Transform on the Riemann Sphere
    M. Calixto
    J. Guerrero
    J. C. Sánchez-Monreal
    Journal of Fourier Analysis and Applications, 2008, 14 : 538 - 567
  • [29] Sampling theorem associated with quasi-fourier transform
    Wang, Qiao
    Wu, Lenan
    IEEE Transactions on Signal Processing, 2000, 48 (03)
  • [30] Sampling theorem for two dimensional fractional Fourier transform
    Zayed, Ahmed, I
    SIGNAL PROCESSING, 2021, 181