Tantalum Arsenide-Based One-Dimensional Photonic Structures

被引:3
|
作者
Kriegel, Ilka [1 ]
Guizzardi, Michele [2 ]
Scotognella, Francesco [2 ,3 ]
机构
[1] Ist Italiano Tecnol IIT, Dept Nanochem, Via Morego 30, I-16163 Genoa, Italy
[2] Politecn Milan, Dipartimento Fis, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Ist Italiano Tecnol, Ctr Nano Sci & Technol PoliMi, Via Giovanni Pascoli 70-3, I-20133 Milan, Italy
来源
CERAMICS-SWITZERLAND | 2018年 / 1卷 / 01期
基金
欧盟地平线“2020”;
关键词
photonic crystals; Weyl semimetals; tantalum arsenide; high refractive index materials;
D O I
10.3390/ceramics1010012
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Weyl semimetals can be described as the three-dimensional analogue of graphene, showing linear dispersion around nodes (Weyl points). Tantalum arsenide is among the most studied Weyl semimetals. It has been demonstrated that TaAs has a very high value of the real part of the complex refractive index in the infrared region. In this work we show one-dimensional photonic crystals alternating TaAs with SiO2 or TiO2 and a microcavity where a layer of TaAs is embedded between two SiO2-TiO2 multilayers.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 50 条
  • [21] Topological Edge Modes in One-Dimensional Photonic Artificial Structures
    Zheng J.
    Guo Z.
    Sun Y.
    Jiang H.
    Li Y.
    Chen H.
    Progress in Electromagnetics Research, 2022, 177 : 1 - 20
  • [22] Localized modes in one-dimensional nonlinear periodic photonic structures
    Apalkov, V. M.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (27)
  • [23] Surface states in one-dimensional photonic band gap structures
    Djafari-Rouhani, B
    El Boudouti, EH
    Akjouj, A
    Dobrzynski, L
    Vasseur, JO
    Mir, A
    Fettouhi, N
    Zemmouri, J
    VACUUM, 2001, 63 (1-2) : 177 - 183
  • [24] Defect mode in periodic and quasiperiodic one-dimensional photonic structures
    Ehab Abdel-Rahman
    Amr Shaarawi
    Journal of Materials Science: Materials in Electronics, 2009, 20 : 153 - 158
  • [25] Lyapunov exponents for one-dimensional aperiodic photonic bandgap structures
    Kissel, Glen J.
    METAMATERIALS: FUNDAMENTALS AND APPLICATIONS IV, 2011, 8093
  • [26] Optical parametric amplification in one-dimensional photonic bandgap structures
    Wicharn, Surawut
    Buranasiri, Prathan
    Ruttanapun, Chesta
    Jindajitawat, Phumin
    APPLIED OPTICS, 2013, 52 (25) : 6090 - 6099
  • [27] Uniplanar one-dimensional photonic-bandgap structures and resonators
    Yun, TY
    Chang, K
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (03) : 549 - 553
  • [28] One-dimensional disordered photonic structures with two or more materials
    Chiasera, Alessandro
    Criante, Luigino
    Varas, Stefano
    Della Valle, Giuseppe
    Ramponi, Roberta
    Ferrari, Maurizio
    Zur, Lidia
    Lukowiak, Anna
    Kriegel, Ilka
    Bellingeri, Michele
    Cassi, Davide
    Scotognella, Francesco
    FIBER LASERS AND GLASS PHOTONICS: MATERIALS THROUGH APPLICATIONS, 2018, 10683
  • [29] Microwave Properties of One-dimensional Photonic Structures Based on Composite Layers Filled with Nanocarbon
    Vovchenko, Ludmila
    Lozitsky, Oleg
    Sagalianov, Igor
    Matzui, Ludmila
    Launets, Vilen
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [30] Microwave Properties of One-dimensional Photonic Structures Based on Composite Layers Filled with Nanocarbon
    Ludmila Vovchenko
    Oleg Lozitsky
    Igor Sagalianov
    Ludmila Matzui
    Vilen Launets
    Nanoscale Research Letters, 2017, 12