HAMILTONIAN STRUCTURES OF THE MELNIKOV SYSTEM AND ITS REDUCTIONS

被引:7
|
作者
OEVEL, W
SIDORENKO, J
STRAMPP, W
机构
[1] UNIV LWOW,FAC MATH & MECH,LVOV 290000,UKRAINE
[2] GH UNIV KASSEL,FACHBEREICH MATH INFORMAT 17,D-34109 KASSEL,GERMANY
关键词
D O I
10.1088/0266-5611/9/6/010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The bi-Hamiltonian structure of an integrable dynamical system introduced by Melnikov is studied. This equation arises as a symmetry constraint of the KP hierarchy via squared eigenfunctions and can be understood as a Boussinesq system with a source. The standard linear and quadratic Poisson brackets associated with the space of pseudo-differential symbols are used to derive two compatible Hamiltonian operators. A bi-Hamiltonian formulation for the Drinfeld-Sokolov system is derived via reduction techniques.
引用
收藏
页码:737 / 747
页数:11
相关论文
共 50 条
  • [31] COMMENTS ON GENERALIZED QUANTUM HAMILTONIAN REDUCTIONS
    KAWAI, T
    NAKATSU, T
    MODERN PHYSICS LETTERS A, 1991, 6 (38) : 3557 - 3564
  • [32] On symplectic resolutions and factoriality of Hamiltonian reductions
    Bellamy, Gwyn
    Schedler, Travis
    MATHEMATISCHE ANNALEN, 2019, 375 (1-2) : 165 - 176
  • [33] On symplectic resolutions and factoriality of Hamiltonian reductions
    Gwyn Bellamy
    Travis Schedler
    Mathematische Annalen, 2019, 375 : 165 - 176
  • [34] The Melnikov's method for local-subharmonic orbits of a vibro-impact quasi-Hamiltonian system
    Zhang S.-J.
    Wen G.-L.
    Wang J.-Y.
    Xu H.-D.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2016, 29 (02): : 214 - 219
  • [35] NLS-MKdV hierarchy and its Hamiltonian structures
    Zhang, Ning
    Dong, Huan-He
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (05) : 1221 - 1229
  • [36] NLS-MKdV Hierarchy and Its Hamiltonian Structures
    Ning Zhang
    Huan-He Dong
    International Journal of Theoretical Physics, 2008, 47 : 1221 - 1229
  • [37] MELNIKOV METHOD AND ARNOLD DIFFUSION FOR PERTURBATIONS OF INTEGRABLE HAMILTONIAN-SYSTEMS
    HOLMES, PJ
    MARSDEN, JE
    JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (04) : 669 - 675
  • [38] The method of Melnikov for perturbations of multi-degree-of-freedom Hamiltonian systems
    Yagasaki, K
    NONLINEARITY, 1999, 12 (04) : 799 - 822
  • [39] Splitting Potential and the Poincaré-Melnikov Method for Whiskered Tori in Hamiltonian Systems
    A. Delshams
    P. Gutiérrez
    Journal of Nonlinear Science, 2000, 10 : 433 - 476
  • [40] Melnikov functions and limit cycle bifurcations for a class of piecewise Hamiltonian systems
    Hou, Wenwen
    Han, Maoan
    AIMS MATHEMATICS, 2024, 9 (02): : 3957 - 4013