TETANUS TOXIN;
BOTULINUM TOXIN;
IONIC CHANNEL;
PROTEIN DESIGN;
LIPID BILAYER;
SIGNAL TRANSDUCTION;
D O I:
10.1016/0014-5793(92)81173-J
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Synthetic peptides with amino acid sequences corresponding to predicted transmembrane segments of tetanus toxin were used as probes to identify a channel-forming motif. A peptide denoted TeTx II, with sequence GVVLLLEYIPEITLPVIAALSIA, forms cation-selective channels when reconstituted in planar lipid bilayers. The single channel conductance in 0.5 M NaCl or KCl is 28 +/- 3 and 24 +/- 2 pS, respectively. In contrast, a peptide with sequence NFIGALETTGVVLLLEYIPEIT, denoted as TeTx I, or a peptide with the same amino acid composition as TeTx II but with a randomized sequence, do not form channels. Conformational energy calculations show that a bundle of four amphipathic alpha-helices is a plausible structural motif underlying observable pore properties. The identified functional module may account for the channel-forming activity of both tetanus toxin and the homologous botulinum toxin A.