MULTIPLIERS BETWEEN INVARIANT SUBSPACES OF THE BACKWARD SHIFT

被引:33
|
作者
CROFOOT, RB
机构
[1] University College of the Cariboo, Kamloops, BC
关键词
D O I
10.2140/pjm.1994.166.225
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Contained in the Hardy space H-2 on the unit disk in the complex plane are certain Hilbert spaces which are invariant under the adjoint of the shift. One such space H(b) is associated with each function b in the closed unit ball of H-infinity. In the special case where b is an inner function, H(b) is just the subspace of H-2 orthogonal to the shift-invariant subspace bH(2). It is proven here that for any functions b(1) and b(2) in the closed ball of H-infinity, the spaces H(b(1)) and H(b(2)) are isometrically isomorphic under a multiplication operator if and only if there is a disk automorphism tau such that b(2) = tau circle b(1). In this case, the multiplicative isomorphism is determined explicitly and uniquely. This motivates an investigation of multipliers between H(b(1)) and H(b(2)), that is, multiplication operators acting bijectively but not necessarily isometrically. Restricting to the case where b(1) and b(2) are inner functions, it is shown that a multiplier between given spaces is unique up to multiplication by a nonzero constant, and several theorems are proven concerning the existence of such multipliers. Finally, consideration is given to the implications of these results for the characterization of the invariant subspaces in H-2 on an annulus.
引用
收藏
页码:225 / 246
页数:22
相关论文
共 50 条
  • [31] Rank of Finite Rudin Type Backward Shift Invariant Subspaces Over the Bidisk
    Kei Ji Izuchi
    Kou Hei Izuchi
    Yuko Izuchi
    Complex Analysis and Operator Theory, 2017, 11 : 675 - 705
  • [32] Rank-one cross commutators on backward shift invariant subspaces on the bidisk
    Kei Ji Izuchi
    Kou Hei Izuchi
    Acta Mathematica Sinica, English Series, 2009, 25 : 693 - 714
  • [33] Invariant subspaces for the backward shift on Hilbert spaces of analytic functions with regular norm
    Aleman, Alexandru
    Richter, Stefan
    Sundberg, Carl
    BERGMAN SPACES AND RELATED TOPICS IN COMPLEX ANALYSIS, PROCEEDINGS, 2006, 404 : 1 - +
  • [34] Backward shift invariant subspaces with applications to band preserving and phase retrieval problems
    Qian, Tao
    Tan, Lihui
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (06) : 1591 - 1598
  • [35] On Invariant Subspaces for the Shift Operator
    Liu, Junfeng
    SYMMETRY-BASEL, 2019, 11 (06):
  • [36] INVARIANT SUBSPACES OF THE DIRICHLET SHIFT
    RICHTER, S
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1988, 386 : 205 - 220
  • [37] Finite dimensional backward shift invariant subspaces of a class of reproducing kernel Hilbert spaces
    Bolotnikov, V
    Rodman, L
    LINEAR & MULTILINEAR ALGEBRA, 2004, 52 (05): : 321 - 334
  • [38] Inner multipliers and Rudin type invariant subspaces
    Chattopadhyay A.
    Das B.K.
    Sarkar J.
    Acta Scientiarum Mathematicarum, 2016, 82 (3-4): : 519 - 528
  • [40] INVARIANT SUBALGEBRAS FOR BACKWARD SHIFT
    FISHER, SD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A393 - A393