A NONLINEAR GALERKIN METHOD FOR THE NAVIER-STOKES EQUATIONS

被引:29
|
作者
JAUBERTEAU, F
ROSIER, C
TEMAM, R
机构
[1] Laboratoire d'Analyse Numérique, Université Paris-Sud, 91405 Orsay
关键词
D O I
10.1016/0045-7825(90)90028-K
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Modern large scale computing allows the utilization of a very large number of variables/modes for spatial discretization. Therefore the computer tends to be saturated by computations on small wavelengths that carry a small percentage of the total energy. We advocate the utilization of algorithms treating differently small wavelengths and large wavelengths and we present here an algorithm of this sort, the nonlinear Galerkin method, stemming from the dynamical system theory. © 1990.
引用
收藏
页码:245 / 260
页数:16
相关论文
共 50 条
  • [21] A weak Galerkin meshless method for incompressible Navier-Stokes equations
    Li, Xiaolin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 445
  • [22] Fully discrete postprocessing Galerkin method for the Navier-Stokes equations
    He, YN
    Li, KT
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2004, 11 (5-6): : 615 - 630
  • [23] A MULTILEVEL DISCONTINUOUS GALERKIN METHOD FOR THE COMPRESSIBLE NAVIER-STOKES EQUATIONS
    Prill, F.
    Lukacova-Medvidova, M.
    Hartmann, R.
    ALGORITMY 2009: 18TH CONFERENCE ON SCIENTIFIC COMPUTING, 2009, : 91 - 100
  • [24] CONVERGENCE OF THE FOURIER GALERKIN METHOD FOR THE NAVIER-STOKES EQUATIONS ON THE SPHERE
    DELPRETE, V
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1993, 7B (01): : 167 - 186
  • [25] A weak Galerkin finite element method for the Navier-Stokes equations
    Liu, Xin
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 333 : 442 - 457
  • [26] On the discontinuous Galerkin method for the numerical solution of the Navier-Stokes equations
    Dolejsí, V
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2004, 45 (10) : 1083 - 1106
  • [27] A Weak Galerkin Finite Element Method for the Navier-Stokes Equations
    Zhang, Jiachuan
    Zhang, Kai
    Li, Jingzhi
    Wang, Xiaoshen
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (03) : 706 - 746
  • [28] A weak Galerkin finite element method for the Navier-Stokes equations
    Hu, Xiaozhe
    Mu, Lin
    Ye, Xiu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 614 - 625
  • [29] Numerical solution of the Navier-Stokes equations by discontinuous Galerkin method
    Krasnov, M. M.
    Kuchugov, P. A.
    Ladonkina, M. E.
    Lutsky, A. E.
    Tishkin, V. F.
    10TH INTERNATIONAL CONFERENCE ON AEROPHYSICS AND PHYSICAL MECHANICS OF CLASSICAL AND QUANTUM SYSTEMS, 2017, 815
  • [30] The Elastoplast Discontinuous Galerkin (EDG) method for the Navier-Stokes equations
    Borrel, M.
    Ryan, J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (01) : 1 - 22