A BAYES THEOREM URN MODEL OPTIMIZATION PROBLEM

被引:0
|
作者
PAUL, JL
机构
来源
AMERICAN STATISTICIAN | 1981年 / 35卷 / 04期
关键词
D O I
10.2307/2683299
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:247 / 249
页数:3
相关论文
共 50 条
  • [31] MEASURE OF BAYES THEOREM
    KRAEMER, HC
    DENNIS, C
    AMERICAN JOURNAL OF CARDIOLOGY, 1984, 54 (07): : 939 - 940
  • [32] Bayes's theorem
    Eells, E
    MIND, 2004, 113 (451) : 591 - 596
  • [33] Configuration models as an urn problem
    Casiraghi, Giona
    Nanumyan, Vahan
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [34] A Novel Bayes' Theorem-Based Saliency Detection Model
    He, Xin
    Jing, Huiyun
    Han, Qi
    Niu, Xiamu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2011, E94D (12) : 2545 - 2548
  • [35] Configuration models as an urn problem
    Giona Casiraghi
    Vahan Nanumyan
    Scientific Reports, 11
  • [36] Model the Uncertainty in Target Recognition using Possiblized Bayes' Theorem
    Mei, Wei
    Shan, Ganlin
    Wang, Chunping
    2012 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2012,
  • [37] Decentralized Reputation Model based on Bayes' Theorem in Vehicular Networks
    Najafi, Maryam
    Khoukhi, Lyes
    Lemercier, Marc
    IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC 2021), 2021,
  • [38] Recursive expressions in an urn problem
    Janous, W
    AMERICAN MATHEMATICAL MONTHLY, 2003, 110 (03): : 241 - 243
  • [39] Another urn and balls problem
    不详
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (09): : 838 - 839
  • [40] Total Belief Theorem and Generalized Bayes' Theorem
    Dezert, Jean
    Tchamova, Albena
    Han, Deqiang
    2018 21ST INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2018, : 1040 - 1047