ON THE ESSENTIAL APPROXIMATE POINT SPECTRUM OF OPERATORS

被引:1
|
作者
MULLER, V [1 ]
机构
[1] CZECHOSLOVAK ACAD SCI, INST MATH, CS-11567 PRAGUE 1, CZECHOSLOVAKIA
关键词
D O I
10.1007/BF01203126
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If lambda belongs to the essential approximate point spectrum of a Banach space operator T is-an-element-of B(X) and {a(j)}j=0 infinity is a sequence of positive numbers with lim(j --> infinity) a(j) = 0, then there exists x is-an-element-of X such that \\p(T)x\\ greater-than-or-equal-to a(deg p) p(lambda)\ for every polynomial p. This result is the best possible - if \\p(T)x\\ greater-than-or-equal-to c\p(lambda)\ for some constant c > 0 then T has already a non-trivial invariant subspace, which is not true in general.
引用
收藏
页码:1033 / 1041
页数:9
相关论文
共 50 条
  • [31] On the location of the essential spectrum of Schrodinger operators
    Metafune, G
    Pallara, D
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (06) : 1779 - 1786
  • [32] On the essential spectrum of electromagnetic Schrodinger operators
    Rabinovich, VS
    Complex Analysis and Dynamical Systems II, 2005, 382 : 331 - 342
  • [33] ON THE POINT SPECTRUM OF SCHRODINGER-OPERATORS
    BERTHIER, A
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1982, 15 (01): : 1 - 15
  • [34] A POINT SPECTRUM OF SCHRODINGER-OPERATORS
    MURTAZIN, KK
    DOKLADY AKADEMII NAUK SSSR, 1985, 280 (06): : 1306 - 1309
  • [35] Absence of point spectrum for unitary operators
    Astaburuaga, M. A.
    Bourget, O.
    Cortes, V. H.
    Fernandez, C.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 244 (02) : 229 - 241
  • [36] POINT SPECTRUM OF PERTURBATIONS OF UNITARY OPERATORS
    MAKAROV, NG
    LECTURE NOTES IN MATHEMATICS, 1984, 1043 : 129 - 129
  • [37] THE APPROXIMATE POINT SPECTRUM OF A PURE QUASINORMAL OPERATOR
    WILLIAMS, LR
    ACTA SCIENTIARUM MATHEMATICARUM, 1985, 49 (1-4): : 309 - 320
  • [38] On the preservers of some subsets of the approximate point spectrum
    Benbouziane, H.
    El Kettani, M. Ech-Cherif
    El Khchin, I.
    QUAESTIONES MATHEMATICAE, 2025,
  • [39] On the Essential Spectrum of Schrödinger Operators on Trees
    Jonathan Breuer
    Sergey Denisov
    Latif Eliaz
    Mathematical Physics, Analysis and Geometry, 2018, 21
  • [40] On the essential spectrum of Schrodinger operators on Riemannian manifolds
    Poupaud, C
    MATHEMATISCHE ZEITSCHRIFT, 2005, 251 (01) : 1 - 20