Cross-domain based Event Recommendation using Tensor Factorization

被引:3
|
作者
Arora, Anuja [1 ]
Taneja, Vaibhav [1 ]
Parashar, Sonali [1 ]
Mishra, Apurva [1 ]
机构
[1] Jaypee Inst Informat Technol, CSE IT Dept, Noida, India
关键词
Cross Domain Based Recommendation; Event Recommendation; Matrix factorization; Tensor Factorization;
D O I
10.1515/comp-2016-0011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Context in the form of meta-data has been accredited as an important component in cross-domain collaborative filtering (CDCF). In this research paper CDCF concept is used to exploit event information (context) from two UI matrices to allow the recommendation performance of one domain (Facebook-User-Event Matrix) to benefit from the information from another domain (Bookmyshow-Event-Tag Matrix). The model based collaborative filtering approach Tensor Factorization(TF) has been used to integrate Facebook provided User-Event context information with Bookmyshow Event-Tag context information to recommend events. In contrast to the standard collaborative tag recommendation, our CDCF approach uses one User-Event matrix of Facebook that takes another Bookmyshow Event-Tag matrix as additional informant. The proposed cross-domain based Event Recommendation approach is divided into three modules-i) data collection which extracts the unstructured dataset from the two domains Bookmyshow and social networking site Facebook using API's; ii) data mapping module which is basically used to integrate the common knowledge/data that can be shared between considered different domains (Facebook & Bookmyshow). This module integrates and reduces the data into structured events' instances. As the dataset was collected from two different sites, an intersection of both was taken out. Therefore this module is carefully designed according to reliability of information that is common between two domains; iii) 3 order tensor factorization and Latent Dirichlet Allocation (LDA) used for most preferable recommendation by less pertinent result reduction. The proposed 3 order tensor factorization is designed for maximizing the mutual benefit from both the considered domains (organizer and user). Therefore providing three recommendations: For organizers: 1) system recommends places to conduct specific event according to maximum of attendees of a particular type of event at a specific location; 2) recommending target audience to organizer: those who are interested to attend event on the basis of past data for promotion purposes. For users: 3) recommending events to users of their interest on the basis of past record. Our result shows significant improvement in reduction of less relevant data and result effectiveness is measured through recall and precision. Reduction of less relevant recommendation is 64%, 72% and 63% for place recommendation to organizer, target audience recommendation to organizer and event recommendation to user respectively. The proposed tensor factorization approach achieved 68% precision, 15.5% recall in recommending attendees to organizer and 62% precision, 13.4% recall for event recommendation to user.
引用
收藏
页码:126 / 137
页数:12
相关论文
共 50 条
  • [31] Triple Sequence Learning for Cross-domain Recommendation
    Ma, Haokai
    Xie, Ruobing
    Meng, Lei
    Chen, Xin
    Zhang, Xu
    Lin, Leyu
    Zhou, Jie
    [J]. ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (04)
  • [32] Multiple Knowledge Transfer for Cross-Domain Recommendation
    Do, Quan
    Verma, Sunny
    Chen, Fang
    Liu, Wei
    [J]. PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT III, 2019, 11672 : 529 - 542
  • [33] Cross-Domain Recommendation: An Embedding and Mapping Approach
    Man, Tong
    Shen, Huawei
    Jin, Xiaolong
    Cheng, Xueqi
    [J]. PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2464 - 2470
  • [34] Cross-domain Recommendation via Adversarial Adaptation
    Su, Hongzu
    Zhang, Yifei
    Yang, Xuejiao
    Hua, Hua
    Wang, Shuangyang
    Li, Jingjing
    [J]. PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1808 - 1817
  • [35] Transferable Contextual Bandit for Cross-Domain Recommendation
    Liu, Bo
    Wei, Ying
    Zhang, Yu
    Yan, Zhixian
    Yang, Qiang
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3619 - 3626
  • [36] A Novel Cross-Domain Recommendation with Evolution Learning
    Chen, Yi-Cheng
    Lee, Wang-Chien
    [J]. ACM TRANSACTIONS ON INTERNET TECHNOLOGY, 2024, 24 (01)
  • [37] Cross Domain Recommendation Using Semantic Similarity And Tensor Decomposition
    Kumar, Vivek
    Shrivastva, Krishna Mohan P. D.
    Singh, Shailendra
    [J]. INTERNATIONAL CONFERENCE ON COMPUTATIONAL MODELLING AND SECURITY (CMS 2016), 2016, 85 : 317 - 324
  • [38] Transfer learning in cross-domain sequential recommendation
    Xu, Zitao
    Pan, Weike
    Ming, Zhong
    [J]. INFORMATION SCIENCES, 2024, 669
  • [39] TLRec: Transfer Learning for Cross-domain Recommendation
    Chen, Leihui
    Zheng, Jianbing
    Gao, Ming
    Zhou, Aoying
    Zeng, Wei
    Chen, Hui
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON BIG KNOWLEDGE (IEEE ICBK 2017), 2017, : 167 - 172
  • [40] Cross-Domain Recommendation: Challenges, Progress, and Prospects
    Zhu, Feng
    Wang, Yan
    Chen, Chaochao
    Zhou, Jun
    Li, Longfei
    Liu, Guanfeng
    [J]. PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4721 - 4728