APPELL'S FUNCTION F-1 AND EXTON'S TRIPLE HYPERGEOMETRIC FUNCTION X-9

被引:0
|
作者
Choi, Junesang [1 ]
Rathie, Arjun K. [2 ]
机构
[1] Dongguk Univ, Dept Math, Gyeongju 780714, South Korea
[2] Cent Univ Kerala, Sch Math & Phys Sci, Dept Math, Kasaragod 671328, India
基金
新加坡国家研究基金会;
关键词
hypergeometric functions of several variables; multiple Gaussian hyper-geometric series; Appell's function F-1; Exton's triple hypergeometric function X-9; Gauss's hyper-geometric functions; generalizations of Kummer's second theorem;
D O I
10.7468/jksmeb.2013.24.1.37
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the theory of hypergeometric functions of one or several variables, a remarkable amount of mathematicians's concern has been given to develop their transformation formulas and summation identities. Here we aim at presenting explicit expressions (in a single form) of the following weighted Appell's function F-1: (1 + 2x)(-alpha) (1 + 2z)(-b) F-1 (c, a, b; 2c + j; 4x/1+ 2x, 4z/1 + 2z) (j = 0, +/- 1...,+/- 5) in terms of Exton's triple hypergeometric X-9. The results are derived with the help of generalizations of Kummer's second theorem very recently provided by Kim et al. A large number of very interesting special cases including Exton's result are also given.
引用
收藏
页码:37 / 50
页数:14
相关论文
共 50 条
  • [21] Relations between Lauricella's triple hypergeometric function FA(3)[x, y, z] and the Srivastava function F(3)[x, y, z]
    Choi, Junesang
    Hasanov, Anvar
    Srivastava, H. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2012, 23 (01) : 69 - 82
  • [22] Algebraic evaluations of some Euler integrals, duplication formulae for Appell's hypergeometric function F1, and Brownian variations
    Ismail, MEH
    Pitman, J
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2000, 52 (05): : 961 - 981
  • [23] Recursion formulas for Appell's hypergeometric function F2 with some applications to radiation field problems
    Opps, Sheldon B.
    Saad, Nasser
    Srivastava, H. M.
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) : 545 - 558
  • [24] ADDENDUM TO A HYPERGEOMETRIC TRANSFORMATION ASSOCIATED WITH APPELL FUNCTION F4
    SRIVASTAVA, HM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1969, 66 : 569 - +
  • [25] Extended Exton's Triple and Horn's Double Hypergeometric Functions and Associated Bounding Inequalities
    Parmar, Rakesh Kumar
    Choi, Junesang
    Saravanan, S.
    SYMMETRY-BASEL, 2023, 15 (06):
  • [26] Rigidity for Appell's hypergeometric series F4
    Haraoka, Yoshishige
    Ueno, Youichi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (01): : 149 - 164
  • [27] Recursion formulas for Srivastava's general triple hypergeometric function
    Sahai, Vivek
    Verma, Ashish
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2016, 9 (03)
  • [28] A (p, ν)-EXTENSION OF SRIVASTAVA'S TRIPLE HYPERGEOMETRIC FUNCTION HC
    Dar, S. A.
    Paris, R. B.
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 108 (122): : 33 - 45
  • [29] Generalized bivariate beta distributions involving Appell's hypergeometric function of the second kind
    Marcela Orozco-Castaneda, Johanna
    Nagar, Daya K.
    Gupta, Arjun K.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (08) : 2507 - 2519
  • [30] Some reduction and transformation formulas for the Appell hypergeometric function F2
    Opps, SB
    Saad, N
    Srivastava, HM
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 302 (01) : 180 - 195