Simplified maximum principle of the Navier-Stokes equation

被引:0
|
作者
Akysh, A. Sh. [1 ]
机构
[1] Inst Math & Math Modeling MES CS RK, Alma Ata, Kazakhstan
来源
关键词
nonlinear Navier-Stokes equations system; the principle of maximum for Navier-Stokes equations; uniqueness of weak generalized solutions of Navier-Stokes equations; existence of strong solutions of Navier-Stokes equations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the work the validity of principle of maximum for the Navier-Stokes equations (NSE) is shown. On what basis in the chosen space are proved uniqueness of weak generalized solutions and existence of strong solutions of a problem for NSE as a whole on time t is an element of[0,T], for all T < infinity.
引用
收藏
页码:16 / 22
页数:7
相关论文
共 50 条
  • [21] RESTRICTED INVARIANCE OF THE NAVIER-STOKES EQUATION
    ROSEN, G
    [J]. PHYSICAL REVIEW A, 1980, 22 (01): : 313 - 314
  • [22] A ladder inequality for the Navier-Stokes equation
    Kukavica, I
    [J]. NONLINEARITY, 2000, 13 (03) : 639 - 652
  • [23] OBSERVERS FOR COMPRESSIBLE NAVIER-STOKES EQUATION
    Apte, Amit
    Auroux, Didier
    Ramaswamy, Mythily
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2018, 56 (02) : 1081 - 1104
  • [24] The Navier-Stokes equation in noncylindrical domain
    Miranda, MM
    Límaco, J
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 1997, 16 (03): : 247 - 265
  • [25] A large deviation principle for 2D stochastic Navier-Stokes equation
    Gourcy, Mathieu
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (07) : 904 - 927
  • [26] PROBABILISTIC APPROACH TO THE NAVIER-STOKES EQUATION
    MARRA, R
    [J]. PHYSICS LETTERS A, 1990, 148 (1-2) : 41 - 44
  • [27] On the Navier-Stokes limit of the Boltzmann equation
    Belardinelli, D.
    Marra, R.
    [J]. NONLINEARITY, 2014, 27 (02) : 209 - 225
  • [28] Application of Navier-Stokes equation to lubrication
    Hong, YP
    Chen, D
    Kong, XM
    Wang, JD
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 2001, 44 : 58 - 63
  • [29] Scaling Navier-Stokes equation in nanotubes
    Garajeu, Mihail
    Gouin, Henri
    Saccomandi, Giuseppe
    [J]. PHYSICS OF FLUIDS, 2013, 25 (08)
  • [30] Navier-Stokes equation with hereditary viscosity
    Barbu, V
    Sritharan, SS
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (03): : 449 - 461