Quantitative Ultrasound.

被引:0
|
作者
Barkmann, R. [1 ]
机构
[1] Univ KliniKum Schleswig Holstein, Sekt Biomed Bildgebung, Radiol Diagnost Klin, Am Botanischen Garten 14, D-24118 Kiel, Germany
来源
JOURNAL FUR MINERALSTOFFWECHSEL | 2013年 / 20卷 / 02期
关键词
quantitative ultrasound; fracture prediction; bone material properties;
D O I
暂无
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Quantitative Ultrasound. Methods of quantitative ultrasound (QUS) are parametric approaches for determining properties of bone by means of analysis of sound waves after traversing of the bone or a part thereof. There are different procedures depending on the kind of bone and direction of transmission. Transverse transition through the calcaneus has been found as the best method for the prediction of osteo-porotic fractures, with a predictive power comparable to DXA. As long as no studies on the drug-mediated fracture reduction in a group of patients who received their treatment recommendations based on QUS criteria have been performed, no therapy using a QUS measurement without DXA measurement is recommended. QUS at the calcaneus is highly correlated with DXA at the same site but weakly with the density of other measurement sites such as the femur or the spine, so no diagnosis of osteoporosis with QUS is possible. Newer developments are focusing on measurement of the proximal femur, especially of the neck, and on the determination of bone strength parameters, which are not detectable with bone densitometry.
引用
下载
收藏
页码:46 / 50
页数:5
相关论文
共 50 条
  • [31] Acceleration of fibrinolysis with 40 kHz ultrasound.
    Suchkova, V
    Siddiqi, F
    Carstensen, E
    Dalecki, D
    Francis, C
    BLOOD, 1997, 90 (10) : 1324 - 1324
  • [32] Comparison of Quantitative Coronary Angiography With Intracoronary Ultrasound. Can Quantitative Coronary Angiography Accurately Estimate the Severity of a Luminal Stenosis
    Bourantas, Christos V.
    Tweddel, Ann C.
    Papafaklis, Michail I.
    Karvelis, Petros S.
    Fotiadis, Dimitrios I.
    Katsouras, Christos S.
    Michalis, Lampros K.
    ANGIOLOGY, 2009, 60 (02) : 169 - 179
  • [33] Machine learning approaches for non-invasive ultrasound. Based quantitative assessment of liver steatosis
    Lascio, N. D.
    Avigo, C.
    Salvati, A.
    Martini, N.
    Ragucci, M.
    Monti, S.
    Prinster, A.
    Chiappino, D.
    Mancini, M.
    Bonino, F.
    Brunetto, M.
    Faita, F.
    JOURNAL OF HEPATOLOGY, 2018, 68 : S575 - S576
  • [34] Conversion of a refinery asphaltene under ultrasound.
    Yen, TF
    Dunn, K
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U233 - U233
  • [35] Recovery of diaphragm function as assessed by ultrasound.
    McGovern, T
    McCool, FD
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 1999, 159 (03) : A262 - A262
  • [36] Sound Insulation while Working with Ultrasound.
    Strauss, W.
    1600, (22):
  • [37] STRUCTURE OF IMPURITY BANDS AND ABSORPTION OF ULTRASOUND.
    Zaitsev, R.O.
    Malkin, I.A.
    Soviet Journal of Low Temperature Physics (English Translation of Fizika Nizkikh Temperatur), 1976, 2 (01): : 35 - 38
  • [38] Measures in Musculoskeletal Ultrasound. What are Valid?
    Iagnocco, Annamaria
    Damjanov, Nemanja
    Ceccarelli, Fulvia
    CURRENT RHEUMATOLOGY REVIEWS, 2011, 7 (03) : 187 - 198
  • [39] Diagnosis of intestinal lymphoma with endoscopic ultrasound.
    Pohl, C
    Scholten, D
    Forster, W
    Ziegenhagen, DJ
    Diehl, V
    Kruis, W
    GASTROENTEROLOGY, 1996, 110 (04) : A577 - A577
  • [40] Paediatric ultrasound. I. Abdominal
    Michael Riccabona
    European Radiology, 2001, 11 : 2354 - 2368