Markov-Chain Monte-Carlo methods and non-identifiabilities

被引:1
|
作者
Mueller, Christian [1 ]
Weysser, Fabian [2 ]
Mrziglod, Thomas [2 ]
Schuppert, Andreas [1 ]
机构
[1] Rhein Westfal TH Aachen, Joint Res Ctr Computat Biomed, Aachen, Germany
[2] Bayer AG, Appl Math, Leverkusen, Germany
来源
MONTE CARLO METHODS AND APPLICATIONS | 2018年 / 24卷 / 03期
关键词
Markov-Chain Monte-Carlo; non-identifiability;
D O I
10.1515/mcma-2018-0018
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the problem of sampling from high-dimensional likelihood functions with large amounts of non-identifiabilities via Markov-ChainMonte-Carlo algorithms. Non-identifiabilities are problematic for commonly used proposal densities, leading to a low effective sample size. To address this problem, we introduce a regularization method using an artificial prior, which restricts non-identifiable parts of the likelihood function. This enables us to sample the posterior using common MCMC methods more efficiently. We demonstrate this with three MCMC methods on a likelihood based on a complex, high-dimensional blood coagulation model and a single series of measurements. By using the approximation of the artificial prior for the non-identifiable directions, we obtain a sample quality criterion. Unlike other sample quality criteria, it is valid even for short chain lengths. We use the criterion to compare the following three MCMC variants: The Random Walk Metropolis Hastings, the Adaptive Metropolis Hastings and the Metropolis adjusted Langevin algorithm.
引用
收藏
页码:203 / 214
页数:12
相关论文
共 50 条
  • [21] Indirect gradient analysis by Markov-chain Monte Carlo
    Steven C. Walker
    [J]. Plant Ecology, 2015, 216 : 697 - 708
  • [22] Estimating identity by descent using Monte-Carlo Markov chain methods
    Shete, S
    Daw, EW
    Ma, JZ
    Lu, Y
    Amos, CI
    [J]. GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 277 - 278
  • [23] A MONTE-CARLO MARKOV-CHAIN MODEL FOR THE ASSOCIATION OF DATA FOR CHROMOSOME-ABERRATIONS AND FORMATION OF MICRONUCLEI
    HAHNFELDT, P
    HLATKY, LR
    [J]. RADIATION RESEARCH, 1994, 138 (02) : 239 - 245
  • [24] Near-Capacity Iteratively Decoded Markov-Chain Monte-Carlo Aided BLAST System
    Liu, W.
    Kong, L.
    Ng, S. X.
    Li, J. D.
    Hanzo, L.
    [J]. GLOBECOM 2009 - 2009 IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE, VOLS 1-8, 2009, : 5635 - 5639
  • [25] MARKOV-CHAIN MONTE-CARLO ESTIMATION OF AUTOREGRESSIVE MODELS WITH APPLICATION TO METAL POLLUTANT CONCENTRATION IN SLUDGE
    BARNETT, G
    KOHN, R
    SHEATHER, S
    WONG, J
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 1995, 22 (10-12) : 7 - 13
  • [26] Parallelized Training of Restricted Boltzmann Machines Using Markov-Chain Monte Carlo Methods
    Yang P.
    Varadharajan S.
    Wilson L.A.
    Smith D.D., II
    Lockman J.A., III
    Gundecha V.
    Ta Q.
    [J]. SN Computer Science, 2020, 1 (3)
  • [27] Statistical Analysis of Chemical Transformation Kinetics Using Markov-Chain Monte Carlo Methods
    Goerlitz, Linus
    Gao, Zhenglei
    Schmitt, Walter
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2011, 45 (10) : 4429 - 4437
  • [28] Asteroid orbital ranging using Markov-Chain Monte Carlo
    Oszkiewicz, Dagmara
    Muinonen, Karri
    Virtanen, Jenni
    Granvik, Mikael
    [J]. METEORITICS & PLANETARY SCIENCE, 2009, 44 (12) : 1897 - 1904
  • [29] Asteroid mass estimation using Markov-chain Monte Carlo
    Siltala, Lauri
    Granvik, Mikael
    [J]. ICARUS, 2017, 297 : 149 - 159
  • [30] COMPUTATION OF ATOMIC MANY-ELECTRON INTEGRALS USING A MARKOV-CHAIN GENERATED MONTE-CARLO METHOD
    GIBBS, RL
    DUNN, T
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1975, 62 (09): : 3454 - 3457