SHORTEST PATH IN A GRID WITH OBSTACLES

被引:0
|
作者
DAMM, E [1 ]
机构
[1] TH DARMSTADT,FACHSEBIET UBERTRAGUNGSTECHNIK,D-6100 DARMSTADT,FED REP GER
来源
ANGEWANDTE INFORMATIK | 1977年 / 05期
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
引用
收藏
页码:213 / 216
页数:4
相关论文
共 50 条
  • [21] Path shortening and smoothing of grid-based path planning with consideration of obstacles
    Kanehara, Masatomo
    Kagami, Satoshi
    Kuffner, James. J.
    Thompson, Simon
    Mizoguhi, Hiroshi
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 2986 - 2991
  • [22] Sublinear Search Spaces for Shortest Path Planning in Grid and Road Networks
    Blum, Johannes
    Funke, Stefan
    Storandt, Sabine
    [J]. THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 6119 - 6126
  • [23] Sublinear search spaces for shortest path planning in grid and road networks
    Johannes Blum
    Stefan Funke
    Sabine Storandt
    [J]. Journal of Combinatorial Optimization, 2021, 42 : 231 - 257
  • [24] Sublinear search spaces for shortest path planning in grid and road networks
    Blum, Johannes
    Funke, Stefan
    Storandt, Sabine
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2021, 42 (02) : 231 - 257
  • [25] Acceleration of shortest path and constrained shortest path computation
    Köhler, E
    Möhring, RH
    Schilling, H
    [J]. EXPERIMENTAL AND EFFICIENT ALGORITHMS, PROCEEDINGS, 2005, 3503 : 126 - 138
  • [26] Shortest paths for disc obstacles
    Kim, DS
    Yu, KS
    Cho, YS
    Kim, DU
    Yap, C
    [J]. COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2004, PT 3, 2004, 3045 : 62 - 70
  • [27] Fast Path planning on planar occupancy grid exploiting geometry of obstacles
    Bhowmick, Soumabha
    Mukhopadhyay, Jayanta
    Deb, Alok Kanti
    [J]. 2017 NINTH INTERNATIONAL CONFERENCE ON ADVANCES IN PATTERN RECOGNITION (ICAPR), 2017, : 392 - 397
  • [28] The fuzzy shortest path length and the corresponding shortest path in a network
    Chuang, TN
    Kung, JY
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2005, 32 (06) : 1409 - 1428
  • [29] Shortest shortest path trees of a network
    Hansen, P
    Zheng, ML
    [J]. DISCRETE APPLIED MATHEMATICS, 1996, 65 (1-3) : 275 - 284
  • [30] An Algorithm to Find the Shortest Path through Obstacles of Arbitrary Shapes and Positions in 2D
    Labonte, Gilles
    [J]. ALGORITHMS, 2024, 17 (09)