CONVERGENCE OF A 2ND-ORDER SCHEME FOR SEMILINEAR HYPERBOLIC-EQUATIONS IN 2 + 1 DIMENSIONS

被引:14
|
作者
GLASSEY, R [1 ]
SCHAEFFER, J [1 ]
机构
[1] CARNEGIE MELLON UNIV, DEPT MATH, PITTSBURGH, PA 15213 USA
关键词
D O I
10.2307/2008531
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-order energy-preserving scheme is studied for the solution of the semilinear Cauchy Problem u(tt) - u(xx) - U(yy) + u3 = 0 (t > 0; x, y epsilon R). Smooth data functions of compact support are prescribed at t = 0. On any time interval [0, T], second-order convergence (up to logarithmic corrections) to the exact solution is established in both the energy and uniform norms.
引用
下载
收藏
页码:87 / 106
页数:20
相关论文
共 50 条