We have used a plasmid antitermination test system to examine the response of an Escherichia coli rRNA operon antiterminator to transcription through Rho-dependent and Pho-independent terminator-containing fragments. We also monitored transcription through multiple copies of a terminator to explore the mechanism of rrn antitermination. Four principal observations were made about antitermination and transcriptional terminators. (1) The rrn antiterminator mediated efficient transcription through Rho-dependent terminators. (2) Under the influence of the rrn antiterminator, RNA polymerase transcribed through two and three copies of the Rho-dependent 16 S ⇐ terminator with nearly the same efficiency as through one. (3) The antiterminator had less effect on fragments containing Rho-independent terminators; the rpoC t fragment and three fragments derived from the rrnB terminator region stopped antiterminated transcription. Four other Rho-independent terminator fragments were weakly antiterminated in our test system. (4) Surprisingly, the strength of these terminator fragments was not strongly related to properties such as the -ΔG or number of trailing uridine residues of their canonical Rho-independent structures, but appears to be related to additional downstream terminators. We have drawn the following conclusions from these experiments. First, that ribosomal antitermination primarily reverses Rho-dependent termination by modifying the RNA polymerase elongation complex. Transcription through a 1700 nucleotide, multiple terminator sequence showed that the antiterminator caused persistent changes in the transcription process. Second, that fragments derived from the Rho-independent rrnB and rpoBC terminator regions can effectively stop antiterminated transcription. Third, that efficient in vivo termination may often involve regions with complex multiple terminators. © 1990 Academic Press Limited.