A CHARACTERIZATION OF THE DOOB GRAPHS

被引:2
|
作者
KOOLEN, JH
机构
[1] Department of Mathematics and Computational Science, Eindhoven University of Technology, 5600 MB Eindhoven
关键词
D O I
10.1006/jctb.1995.1046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a graph Gamma we say that lambda exists if every edge lies in exactly lambda triangles. Egawa has shown that the Hamming graphs are determined by their parameters, unless lambda equals 2. In that case the only possible graphs are the Doob graphs. Rifa and Huguet and Nomura generalised this result by Egawa for lambda not equal 2. We generalise Egawa's result for lambda=2. The main part of the proof is a characterization of cartesian products of graphs. (C) 1995 Academic Press, Inc.
引用
收藏
页码:125 / 138
页数:14
相关论文
共 50 条
  • [1] MDS codes in Doob graphs
    E. A. Bespalov
    D. S. Krotov
    [J]. Problems of Information Transmission, 2017, 53 : 136 - 154
  • [2] MDS Codes in Doob Graphs
    Bespalov, E. A.
    Krotov, D. S.
    [J]. PROBLEMS OF INFORMATION TRANSMISSION, 2017, 53 (02) : 136 - 154
  • [3] Perfect codes in Doob graphs
    Denis S. Krotov
    [J]. Designs, Codes and Cryptography, 2016, 80 : 91 - 102
  • [4] Perfect codes in Doob graphs
    Krotov, Denis S.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2016, 80 (01) : 91 - 102
  • [5] Additive perfect codes in Doob graphs
    Minjia Shi
    Daitao Huang
    Denis S. Krotov
    [J]. Designs, Codes and Cryptography, 2019, 87 : 1857 - 1869
  • [6] Additive perfect codes in Doob graphs
    Shi, Minjia
    Huang, Daitao
    Krotov, Denis S.
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2019, 87 (08) : 1857 - 1869
  • [7] Erratum to: “MDS codes in Doob graphs”
    E. A. Bespalov
    D. S. Krotov
    [J]. Problems of Information Transmission, 2017, 53 (3) : 306 - 306
  • [8] The Existence of Perfect Codes in Doob Graphs
    Krotov, Denis S.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2020, 66 (03) : 1423 - 1427
  • [9] ON THE MINIMUM SUPPORTS OF SOME EIGENFUNCTIONS IN THE DOOB GRAPHS
    Bespalov, E. A.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 258 - 266
  • [10] ON THE NUMBER OF MAXIMUM INDEPENDENT SETS IN DOOB GRAPHS
    Krotov, D. S.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2015, 12 : 508 - 512