A NOTE ON DONALDSON POLYNOMIALS FOR K3 SURFACES

被引:0
|
作者
NAKASHIMA, T
机构
[1] Department of Mathematics, Tokyo Metropolitan University, Hachioji-shi., Tokyo, 192-03
关键词
D O I
10.1515/form.1994.6.385
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall calculate Donaldson's SO(3)-polynomial invariants for K3 surfaces by an algebro-geometric method, following K.O'Grady.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [21] An isoceny of K3 surfaces
    Van Geemen, B
    Top, J
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 : 209 - 223
  • [22] DEGENERATION OF K3 SURFACES
    NISHIGUCHI, K
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1988, 28 (02): : 267 - 300
  • [23] Noncommutative K3 surfaces
    Kim, H
    Lee, CY
    PHYSICS LETTERS B, 2002, 536 (1-2) : 154 - 160
  • [24] On elliptic K3 surfaces
    Shimada, I
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (03) : 423 - 446
  • [25] SUPERSINGULAR K3 SURFACES
    ARTIN, M
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1974, 7 (04): : 543 - 567
  • [26] On normal K3 surfaces
    Shimada, Ichiro
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 395 - 416
  • [27] Families of K3 surfaces
    Borcherds, RE
    Katzarkov, L
    Pantev, T
    Shepherd-Barron, NI
    JOURNAL OF ALGEBRAIC GEOMETRY, 1998, 7 (01) : 183 - 193
  • [28] ON CURVES ON K3 SURFACES
    MARTENS, G
    LECTURE NOTES IN MATHEMATICS, 1989, 1389 : 174 - 182
  • [29] Zariski K3 surfaces
    Katsura, Toshiyuki
    Schuett, Matthias
    REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (03) : 869 - 894
  • [30] CURVES ON K3 SURFACES
    Chen, Xi
    Gounelas, Frank
    Liedtke, Christian
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (16) : 3283 - 3362