SYMMETRIC STATES OF COMPOSITE SYSTEMS

被引:42
|
作者
FANNES, M [1 ]
LEWIS, JT [1 ]
VERBEURE, A [1 ]
机构
[1] DUBLIN INST ADV STUDIES,SCH THEORET PHYS,DUBLIN 4,IRELAND
关键词
D O I
10.1007/BF00398595
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:255 / 260
页数:6
相关论文
共 50 条
  • [21] Composite supervisory control for symmetric discrete-event systems
    Jiao, Ting
    Wonham, W. M.
    INTERNATIONAL JOURNAL OF CONTROL, 2020, 93 (07) : 1630 - 1636
  • [22] Reliable linear-quadratic control for symmetric composite systems
    Huang, SD
    Lam, J
    Yang, GH
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2001, 32 (01) : 73 - 82
  • [23] Fault tolerant decentralized H∞, control for symmetric composite systems
    Huang, SD
    Lam, J
    Yang, GH
    Zhang, SY
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (11) : 2108 - 2114
  • [24] On separable states for composite systems of distinguishable fermions
    Moriya, H
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3753 - 3762
  • [25] Design of reliable controllers for symmetric composite systems: Primary contingency case
    Yang, GH
    Wang, JL
    Soh, CB
    Lam, J
    PROCEEDINGS OF THE 35TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1996, : 3612 - 3617
  • [26] Decentralised control design of uncertain nominally linear symmetric composite systems
    Bakule, L
    Rodellar, J
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (06): : 530 - 536
  • [27] Composite symmetric second derivative general linear methods for Hamiltonian systems
    Behnaz Talebi
    Ali Abdi
    Gholamreza Hojjati
    Calcolo, 2022, 59
  • [28] Composite symmetric second derivative general linear methods for Hamiltonian systems
    Talebi, Behnaz
    Abdi, Ali
    Hojjati, Gholamreza
    CALCOLO, 2022, 59 (02)
  • [29] Pole assignment for uncertain symmetric circulant composite systems in a specified disk
    Liu, M.
    Jing, Y. -W.
    Zhang, S. -Y.
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 2006, 153 (03): : 357 - 363
  • [30] Decentralised control design of uncertain nominally linear symmetric composite systems
    Acad of Sciences of the Czech, Republic, Prague, Czech Republic
    IEE Proc Control Theory Appl, 6 (530-535):