1-Aryl 3-(2-chloroethyl) ureas (CEUs), a new class of potent antineoplastic agents, were recently developed in our laboratory. These compounds were designed from the aromatic moiety of chlorambucil and the un-nitrosated pharmacophore of carmustine. In the present study we investigated the effect of the potent CEU derivative 4-tert-butyl-[3-(2-chloroethyl)ureido] benzene (tBCEU) on tumor cell lines selected for resistance to a wide range of anticancer drugs. The resistance mechanisms found in these cells included increased expression of P-glycoprotein, increased intracellular concentration of glutathione and/or glutathione-S-transferase activity, alteration of topoisomerase II, and increased DNA repair. Whereas the resistant cell lines were found to be highly resistant to a panel of clinically known anticancer drugs, tBCEU was found to be equally cytotoxic to both resistant and parental cells. The nitrobenzylpyridine assay indicated that tBCEU is a weaker alkylating agent than chlorambucil. This lack of cross-resistance in various resistant tumor cells suggests that tBCEU could be potentially useful in the treatment of cancers resistant to conventional anticancer drugs.