ON SUM SETS OF SIDON SETS .2.

被引:6
|
作者
ERDOS, P
SARKOZY, A
SOS, VT
机构
[1] Mathematical Institute of the Hungarian Academy of Sciences, Budapest, H-1364
关键词
D O I
10.1007/BF02783214
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved that there is no Sidon set selected from {1, 2, ... , N} whose sum set contains c(1)N(1/2) consecutive integers, but it may contain c(2)N(1/3) consecutive integers. Moreover, it is shown that a finite Sidon set cannot be well-covered by generalized arithmetic progressions.
引用
收藏
页码:221 / 233
页数:13
相关论文
共 50 条
  • [21] ON MEASURE OF SUM SETS .2. THE SUM-THEOREM FOR THE TORUS
    MACBEATH, AM
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1953, 49 (01): : 40 - 43
  • [22] Perfect difference sets constructed from Sidon sets
    Cilleruelo, Javier
    Nathanson, Melvyn B.
    COMBINATORICA, 2008, 28 (04) : 401 - 414
  • [23] Sidon sets and Sidon-partitions in cyclic groups through almost different sets
    Delgado, Luis-Miguel
    Montejano, Amanda
    Ruiz, Hamilton
    Trujillo, Carlos
    XII LATIN-AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, LAGOS 2023, 2023, 224 : 267 - 274
  • [24] On the Size of Finite Sidon Sets
    O'Bryant, Kevin
    UKRAINIAN MATHEMATICAL JOURNAL, 2025, 76 (08) : 1352 - 1368
  • [25] SIDON SETS IN A UNION OF INTERVALS
    Riblet, R.
    ACTA MATHEMATICA HUNGARICA, 2022, 167 (02) : 533 - 547
  • [26] Perfect difference sets constructed from Sidon sets
    Javier Cilleruelo
    Melvyn B. Nathanson
    Combinatorica, 2008, 28 : 401 - 414
  • [27] Constructions of generalized Sidon sets
    Martin, Greg
    O'Bryant, Kevin
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (04) : 591 - 607
  • [28] P-SIDON SETS
    JOHNSON, GW
    WOODWARD, GS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A167 - A167
  • [29] On the number of generalized Sidon sets
    József Balogh
    Lina Li
    P. Hajnal
    Acta Scientiarum Mathematicarum, 2021, 87 : 3 - 21
  • [30] SIDON SETS ON COMPACT GROUPS
    DUNKL, CF
    RAMIREZ, DE
    MONATSHEFTE FUR MATHEMATIK, 1971, 75 (02): : 111 - &