DECOMPOSITION OF BOOLEAN FUNCTIONS BASED ON POLYNOMIAL EXPANSION

被引:0
|
作者
AVGUL, LV
SUPRUN, VP
机构
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
引用
收藏
页码:151 / 156
页数:6
相关论文
共 50 条
  • [31] The Decomposition Tree for analyses of Boolean functions
    Friedel, Maik
    Nikolajewa, Swetlana
    Wilhelm, Thomas
    [J]. MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE, 2008, 18 (02) : 411 - 426
  • [32] Structured Decomposition for Reversible Boolean Functions
    Jiang, Jiaqing
    Sun, Xiaoming
    Sun, Yuan
    Wu, Kewen
    Xia, Zhiyu
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2020, 39 (10) : 2410 - 2421
  • [33] Algebraic attacks and decomposition of boolean functions
    Meier, W
    Pasalic, E
    Carlet, C
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2004, PROCEEDINGS, 2004, 3027 : 474 - 491
  • [34] REDUNDANCY OF ARGUMENTS AND DECOMPOSITION OF BOOLEAN FUNCTIONS
    JENIN, SV
    BIBILO, PN
    [J]. AVTOMATIKA I VYCHISLITELNAYA TEKHNIKA, 1978, (04): : 16 - 21
  • [35] Theorems on parallel decomposition of Boolean functions
    Zakrevskii, AD
    [J]. DOKLADY AKADEMII NAUK BELARUSI, 1998, 42 (05): : 5 - 7
  • [36] CLUTTER DECOMPOSITION AND MONOTONIC BOOLEAN FUNCTIONS
    BILLERA, LJ
    [J]. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1970, 175 (01) : 41 - &
  • [37] The complexity of modular decomposition of Boolean functions
    Bioch, JC
    [J]. DISCRETE APPLIED MATHEMATICS, 2005, 149 (1-3) : 1 - 13
  • [38] JOINT DECOMPOSITION OF A SYSTEM OF BOOLEAN FUNCTIONS
    BIBILO, PN
    YENIN, SV
    [J]. ENGINEERING CYBERNETICS, 1980, 18 (02): : 96 - 102
  • [39] The complexity of AND-decomposition of Boolean functions
    Emelyanov, Pavel
    Ponomaryov, Denis
    [J]. DISCRETE APPLIED MATHEMATICS, 2020, 280 : 113 - 132
  • [40] POLYNOMIAL DECOMPOSITION OF RATIONAL FUNCTIONS
    SCHUTZENBERGER, MP
    [J]. FORMAL PROPERTIES OF FINITE AUTOMATA AND APPLICATIONS, 1989, 386 : 25 - 33