WEIGHT DISTRIBUTIONS FOR A CERTAIN CLASS OF CODES AND MAXIMAL CURVES

被引:7
|
作者
VANDERGEER, G [1 ]
VANDERVLUGT, M [1 ]
机构
[1] LEIDEN UNIV,INST MATH,2300 RA LEIDEN,NETHERLANDS
关键词
D O I
10.1016/0012-365X(92)90548-T
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a close relationship between words in trace codes and algebraic curves we determine the weight distributions for certain subcodes of second-order Reed-Muller codes in odd characteristic. These weight distributions reveal the existence of curves for which the number of rational points attains the Hasse-Weil upper bound.
引用
收藏
页码:209 / 218
页数:10
相关论文
共 50 条
  • [21] Certain maximal curves and Cartier operators
    Garcia, Arnaldo
    Tafazolian, Saeed
    ACTA ARITHMETICA, 2008, 135 (03) : 199 - 218
  • [22] On additive polynomials and certain maximal curves
    Garcia, Arnaldo
    Tafazolian, Saeed
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2008, 212 (11) : 2513 - 2521
  • [23] WEIGHT DISTRIBUTIONS OF A CLASS OF CYCLIC CODES FROM Fl-CONJUGATES
    Li, Chengju
    Yue, Qin
    Heng, Ziling
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2015, 9 (03) : 341 - 352
  • [24] CODES DEFINED FROM SOME MAXIMAL CURVES
    CARRAL, M
    ROTILLON, D
    LY, AT
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 67 (03) : 247 - 257
  • [25] Quantum Stabilizer Codes from Maximal Curves
    Jin, Lingfei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (01) : 313 - 316
  • [26] THE WEIGHT DISTRIBUTIONS OF CONSTACYCLIC CODES
    Li, Fengwei
    Yue, Qin
    Liu, Fengmei
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2017, 11 (03) : 471 - 480
  • [27] Hasse-Davenport curves, Gauss sums, and weight distributions of irreducible cyclic codes
    vanderVlugt, M
    JOURNAL OF NUMBER THEORY, 1995, 55 (02) : 145 - 159
  • [28] On certain maximal curves related to Chebyshev polynomials
    Dias, Guilherme
    Tafazolian, Saeed
    Top, Jaap
    FINITE FIELDS AND THEIR APPLICATIONS, 2025, 101
  • [29] Weight distributions of a class of cyclic codes with arbitrary number of nonzeros in quadratic case
    Yang, Jing
    Xiong, Maosheng
    Xia, Lingli
    FINITE FIELDS AND THEIR APPLICATIONS, 2015, 36 : 41 - 62
  • [30] THE a-NUMBER OF JACOBIANS OF CERTAIN MAXIMAL CURVES
    Nourozi, Vahid
    Tafazolian, Saeed
    Rahmati, Farhad
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (02) : 121 - 128